IHP, Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, D-15236Frankfurt (Oder), Germany.
IKZ, Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, D-12489Berlin, Germany.
ACS Appl Mater Interfaces. 2023 Jan 18;15(2):3119-3130. doi: 10.1021/acsami.2c17395. Epub 2023 Jan 4.
A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rendering the three-dimensional spatial dependence of the six strain tensor components with a lateral resolution of approximately 50 nm. Two different spatial scales governing the strain field fluctuations in proximity of the qubits are observed at <100 nm and >1 μm, respectively. The short-ranged fluctuations have a typical bandwidth of 2 × 10 and can be quantitatively linked to the compressive stressing action of the metal electrodes defining the qubits. By finite element mechanical simulations, it is estimated that this strain fluctuation is increased up to 6 × 10 at cryogenic temperature. The longer-ranged fluctuations are of the 10 order and are associated with misfit dislocations in the plastically relaxed virtual substrate. From this, energy variations of the light and heavy-hole energy maxima of the order of several 100 μeV and 1 meV are calculated for electrodes and dislocations, respectively. These insights over material-related inhomogeneities may feed into further modeling for optimization and design of large-scale quantum processors manufactured using the mainstream Si-based microelectronics technology.
应变的 Ge 量子阱,生长在 SiGe/Si 虚拟衬底上,容纳两个静电定义的空穴自旋量子位,通过基于同步加速器的扫描 X 射线衍射显微镜进行无损研究,以确定其所有的布拉维晶格参数。这使得能够以大约 50nm 的横向分辨率呈现应变张量分量的三维空间依赖性。在量子位附近观察到两种不同的空间尺度来控制应变场的波动,分别为<100nm 和>1μm。短程波动的典型带宽为 2×10,并且可以与定义量子位的金属电极的压缩应力作用定量相关联。通过有限元力学模拟,估计在低温下这种应变波动增加到 6×10。较长程的波动为 10 级,与塑性松弛的虚拟衬底中的位错有关。由此,对于电极和位错,计算出轻空穴和重空穴能极大值的能量变化分别为几个 100μeV 和 1meV。这些关于材料相关非均匀性的见解可能会为使用主流 Si 基微电子技术制造的大规模量子处理器的优化和设计提供进一步的建模。