Wang Rigao, Shuang Feng, Lin Mingsong, Wei Xiangfu, Fang Zheng, She Duan, Cai Wei, Shi Xiaowen, Chen Mingyan
Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, School of Electrical Engineering, Guangxi University, Nanning, 530004, China.
Guangxi Vocational and Technical College of Communications, Nanning, 530023, China.
Sci Rep. 2024 Jun 19;14(1):14149. doi: 10.1038/s41598-024-62721-9.
Using the principles of density functional theory (DFT) and nonequilibrium Green's function (NEGF), We thoroughly researched carbon-doped zigzag boron nitride nanoribbons (ZBNNRs) to understand their electronic behavior and transport properties. Intriguingly, we discovered that careful doping can transform carbon-doped ZBNNRs into a spintronic nanodevice with distinct transport features. Our model showed a giant magnetoresistance (GMR) up to a whopping 10 under mild bias conditions. Plus, we spotted a spin rectifier having a significant rectification ratio (RR) of 10 . Our calculated transmission spectra have nicely explained why there's a GMR up to 10 for spin-up current at biases of V, V, and V, and also accounted for a GMR up to 10 -10 for spin-down current at biases of 1.0 V, 1.1 V, and 1.2 V. Similarly, the transmission spectra elucidate that at biases of 1.0 V, 1.1 V, and 1.2 V for spin-up, and at biases of 1.1 V and 1.2 V for spin-down in APMO, the RRs reach 10 . Our research shines a light on a promising route to push forward the high-performance spintronics technology of ZBNNRs using carbon atom doping. These insights hint that our models could be game-changers in the sphere of nanoscale spintronic devices.
利用密度泛函理论(DFT)和非平衡格林函数(NEGF)原理,我们深入研究了碳掺杂锯齿形氮化硼纳米带(ZBNNRs),以了解其电子行为和输运性质。有趣的是,我们发现精心掺杂可将碳掺杂的ZBNNRs转变为具有独特输运特性的自旋电子纳米器件。我们的模型在温和偏置条件下显示出高达10的巨磁电阻(GMR)。此外,我们还发现了一种整流比(RR)高达10的自旋整流器。我们计算的透射谱很好地解释了为什么在偏置电压为V、V和V时,自旋向上电流的GMR高达10,同时也解释了在偏置电压为1.0 V、1.1 V和1.2 V时,自旋向下电流的GMR高达10 - 10。同样,透射谱表明,在APMO中,自旋向上在偏置电压为1.0 V、1.1 V和1.2 V时,以及自旋向下在偏置电压为1.1 V和1.2 V时,RR达到10。我们的研究为通过碳原子掺杂推动ZBNNRs的高性能自旋电子技术开辟了一条有前景的途径。这些见解表明,我们的模型可能会改变纳米级自旋电子器件领域的现状。