International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan.
ACS Nano. 2011 Apr 26;5(4):2916-22. doi: 10.1021/nn103548r. Epub 2011 Mar 29.
Substitutional carbon doping of the honeycomb-like boron nitride (BN) lattices in two-dimensional (nanosheets) and one-dimensional (nanoribbons and nanotubes) nanostructures was achieved via in situ electron beam irradiation in an energy-filtering 300 kV high-resolution transmission electron microscope using a C atoms feedstock intentionally introduced into the microscope. The C substitutions for B and N atoms in the honeycomb lattices were demonstrated through electron energy loss spectroscopy, spatially resolved energy-filtered elemental mapping, and in situ electrical measurements. The preferential doping was found to occur at the sites more vulnerable to electron beam irradiation. This transformed BN nanostructures from electrical insulators to conductors. It was shown that B and N atoms in a BN nanotube could be nearly completely replaced with C atoms via electron-beam-induced doping. The doping mechanism was proposed to rely on the knockout ejections of B and N atoms and subsequent healing of vacancies with supplying C atoms.
通过在能量过滤 300kV 高分辨率透射电子显微镜中使用有意引入显微镜的 C 原子原料,对二维(纳米片)和一维(纳米带和纳米管)纳米结构中的类蜂窝状氮化硼(BN)晶格进行了替代碳原子掺杂。通过电子能量损失光谱,空间分辨能量过滤元素映射和原位电测量证明了碳原子取代了蜂窝晶格中的 B 和 N 原子。优先掺杂发生在更容易受到电子束辐照的位置。这将 BN 纳米结构从电绝缘体转变为电导体。结果表明,通过电子束诱导掺杂可以将 BN 纳米管中的 B 和 N 原子几乎完全替换为 C 原子。提出的掺杂机制依赖于 B 和 N 原子的敲出喷射以及随后用供应的 C 原子修复空位。