Langarica Saul, de la Vega Diego, Cariman Nawel, Miranda Martin, Andrade David C, Nunez Felipe, Rodriguez-Fernandez Maria
Department of Electrical EngineeringPontificia Universidad Católica de Chile Santiago 7820436 Chile.
Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de Chile Santiago 7820436 Chile.
IEEE Open J Eng Med Biol. 2024 Feb 13;5:467-475. doi: 10.1109/OJEMB.2024.3365290. eCollection 2024.
Accurate short- and mid-term blood glucose predictions are crucial for patients with diabetes struggling to maintain healthy glucose levels, as well as for individuals at risk of developing the disease. Consequently, numerous efforts from the scientific community have focused on developing predictive models for glucose levels. This study harnesses physiological data collected from wearable sensors to construct a series of data-driven models based on deep learning approaches. We systematically compare these models to offer insights for practitioners and researchers venturing into glucose prediction using deep learning techniques. Key questions addressed in this work encompass the comparison of various deep learning architectures for this task, determining the optimal set of input variables for accurate glucose prediction, comparing population-wide, fine-tuned, and personalized models, and assessing the impact of an individual's data volume on model performance. Additionally, as part of our outcomes, we introduce a meticulously curated dataset inclusive of data from both healthy individuals and those with diabetes, recorded in free-living conditions. This dataset aims to foster research in this domain and facilitate equitable comparisons among researchers.
准确的短期和中期血糖预测对于努力维持健康血糖水平的糖尿病患者以及有患糖尿病风险的个体至关重要。因此,科学界的众多努力都集中在开发血糖水平预测模型上。本研究利用从可穿戴传感器收集的生理数据,构建一系列基于深度学习方法的数据驱动模型。我们系统地比较这些模型,为使用深度学习技术进行血糖预测的从业者和研究人员提供见解。这项工作中涉及的关键问题包括针对此任务比较各种深度学习架构、确定用于准确血糖预测的最佳输入变量集、比较全人群模型、微调模型和个性化模型,以及评估个体数据量对模型性能的影响。此外,作为我们成果的一部分,我们引入了一个精心策划的数据集,其中包括在自由生活条件下记录的健康个体和糖尿病患者的数据。该数据集旨在促进该领域的研究,并便于研究人员进行公平比较。