Suppr超能文献

一种基于数据驱动的个性化方法,用于预测1型糖尿病患者在自由生活条件下运动时的血糖水平。

A data-driven personalized approach to predict blood glucose levels in type-1 diabetes patients exercising in free-living conditions.

作者信息

Neumann Anas, Zghal Yessine, Cremona Marzia Angela, Hajji Adnene, Morin Michael, Rekik Monia

机构信息

Université Laval - Department of Operations and Decision Systems, Faculty of Business Administration, Canada; Polytechnique Montréal - Department of Mathematical and Industrial Engineering, Canada.

Université Laval - Department of Operations and Decision Systems, Faculty of Business Administration, Canada.

出版信息

Comput Biol Med. 2025 May;190:110015. doi: 10.1016/j.compbiomed.2025.110015. Epub 2025 Mar 31.

Abstract

OBJECTIVE

The development of new technologies has generated vast amount of data that can be analyzed to better understand and predict the glycemic behavior of people living with type 1 diabetes. This paper aims to assess whether a data-driven approach can accurately and safely predict blood glucose levels in patients with type 1 diabetes exercising in free-living conditions.

METHODS

Multiple machine learning (XGBoost, Random Forest) and deep learning (LSTM, CNN-LSTM, Dual-encoder with Attention layer) regression models were considered. Each deep-learning model was implemented twice: first, as a personalized model trained solely on the target patient's data, and second, as a fine-tuned model of a population-based training model. The datasets used for training and testing the models were derived from the Type 1 Diabetes Exercise Initiative (T1DEXI). A total of 79 patients in T1DEXI met our inclusion criteria. Our models used various features related to continuous glucose monitoring, insulin pumps, carbohydrate intake, exercise (intensity and duration), and physical activity-related information (steps and heart rate). This data was available for four weeks for each of the 79 included patients. Three prediction horizons (10, 20, and 30 min) were tested and analyzed.

RESULTS

For each patient, there always exists either a machine learning or a deep learning model that conveniently predicts BGLs for up to 30 min. The best performing model differs from one patient to another. When considering the best performing model for each patient, the median and the mean Root Mean Squared Error (RMSE) values (across the 79 patients) for predictions made 10 min ahead were 6.99 mg/dL and 7.46 mg/dL, respectively. For predictions made 30 min ahead, the median and mean RMSE values were 16.85 mg/dL and 17.74 mg/dL, respectively. The majority of the predictions output by the best model of each patient fell within the clinically safe zones A and B of the Clarke Error Grid (CEG), with almost no predictions falling into the unsafe zone E. The most challenging patient to predict 30 min ahead achieved an RMSE value of 32.31 mg/dL (with the corresponding best performing model). The best-predicted patient had an RMSE value of 10.48 mg/dL. Predicting blood glucose levels was more difficult during and after exercise, resulting in higher RMSE values on average. Prediction errors during and after physical activity (two hours and four hours after) generally remained within the clinical safe zones of the CEG with less than 0.5% of predictions falling into the harmful zones D and E, regardless of the exercise category.

CONCLUSIONS

Data-driven approaches can accurately predict blood glucose levels in type 1 diabetes patients exercising in free-living conditions. The best-performing model varies across patients. Approaches in which a population-based model is initially trained and then fine-tuned for each individual patient generally achieve the best performance for the majority of patients. Some patients remain challenging to predict with no straightforward explanation of why a patient is more challenging to predict than another.

摘要

目的

新技术的发展产生了大量数据,这些数据可用于分析,以更好地理解和预测1型糖尿病患者的血糖行为。本文旨在评估数据驱动方法能否准确、安全地预测1型糖尿病患者在自由生活条件下运动时的血糖水平。

方法

考虑了多种机器学习(XGBoost、随机森林)和深度学习(长短期记忆网络、卷积神经网络 - 长短期记忆网络、带注意力层的双编码器)回归模型。每个深度学习模型都实现了两次:第一次,作为仅基于目标患者数据训练的个性化模型;第二次,作为基于人群训练模型的微调模型。用于训练和测试模型的数据集来自1型糖尿病运动倡议(T1DEXI)。T1DEXI中共有79名患者符合我们的纳入标准。我们的模型使用了与连续血糖监测、胰岛素泵、碳水化合物摄入量、运动(强度和持续时间)以及身体活动相关信息(步数和心率)有关的各种特征。这些数据在79名纳入患者中的每一位都有四周的记录。测试并分析了三个预测期(10、20和30分钟)。

结果

对于每位患者,总是存在一个机器学习或深度学习模型能够方便地预测长达30分钟的血糖水平。表现最佳的模型因患者而异。当考虑每位患者的最佳表现模型时,提前10分钟进行预测的中位数和平均均方根误差(RMSE)值(在79名患者中)分别为6.99mg/dL和7.46mg/dL。对于提前30分钟进行的预测,中位数和平均RMSE值分别为16.85mg/dL和17.74mg/dL。每位患者的最佳模型输出的大多数预测值落在克拉克误差网格(CEG)的临床安全区域A和B内,几乎没有预测值落入不安全区域E。提前30分钟最难预测的患者RMSE值为32.31mg/dL(对应表现最佳的模型)。预测效果最好的患者RMSE值为10.48mg/dL。运动期间和运动后预测血糖水平更困难,导致平均RMSE值更高。身体活动期间和之后(运动后两小时和四小时)的预测误差通常仍在CEG的临床安全区域内,无论运动类别如何,落入有害区域D和E的预测不到0.5%。

结论

数据驱动方法可以准确预测1型糖尿病患者在自由生活条件下运动时的血糖水平。表现最佳的模型因患者而异。最初训练基于人群的模型然后针对每个个体患者进行微调的方法通常能使大多数患者获得最佳性能。一些患者仍然难以预测,且对于为何一名患者比另一名患者更难预测没有直接的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验