Suppr超能文献

SASDL和RBATQ:基于群体深度学习和基于强化Q学习的稀疏自动编码器用于脑电图分类

SASDL and RBATQ: Sparse Autoencoder With Swarm Based Deep Learning and Reinforcement Based Q-Learning for EEG Classification.

作者信息

Prabhakar Sunil Kumar, Lee Seong-Whan

机构信息

Department of Artificial IntelligenceKorea University Seoul 02841 South Korea.

出版信息

IEEE Open J Eng Med Biol. 2022 Mar 23;3:58-68. doi: 10.1109/OJEMB.2022.3161837. eCollection 2022.

Abstract

The most vital information about the electrical activities of the brain can be obtained with the help of Electroencephalography (EEG) signals. It is quite a powerful tool to analyze the neural activities of the brain and various neurological disorders like epilepsy, schizophrenia, sleep related disorders, parkinson disease etc. can be investigated well with the help of EEG signals. : In this paper, two versatile deep learning methods are proposed for the efficient classification of epilepsy and schizophrenia from EEG datasets. : The main advantage of using deep learning when compared to other machine learning algorithms is that it has the capability to accomplish feature engineering on its own. Swarm intelligence is also a highly useful technique to solve a wide range of real-world, complex, and non-linear problems. Therefore, taking advantage of these factors, the first method proposed is a Sparse Autoencoder (SAE) with swarm based deep learning method and it is named as (SASDL) using Particle Swarm Optimization (PSO) technique, Cuckoo Search Optimization (CSO) technique and Bat Algorithm (BA) technique; and the second technique proposed is the Reinforcement Learning based on Bidirectional Long-Short Term Memory (BiLSTM), Attention Mechanism, Tree LSTM and Q learning, and it is named as (RBATQ) technique. : Both these two novel deep learning techniques are tested on epilepsy and schizophrenia EEG datasets and the results are analyzed comprehensively, and a good classification accuracy of more than 93% is obtained for all the datasets.

摘要

借助脑电图(EEG)信号可以获取有关大脑电活动的最重要信息。它是分析大脑神经活动的强大工具,借助EEG信号可以很好地研究各种神经系统疾病,如癫痫、精神分裂症、睡眠相关障碍、帕金森病等。本文提出了两种通用的深度学习方法,用于从EEG数据集中有效分类癫痫和精神分裂症。与其他机器学习算法相比,使用深度学习的主要优点是它有能力自行完成特征工程。群体智能也是解决广泛的现实世界、复杂和非线性问题的非常有用的技术。因此,利用这些因素,提出的第一种方法是一种基于群体深度学习方法的稀疏自动编码器(SAE),它使用粒子群优化(PSO)技术、布谷鸟搜索优化(CSO)技术和蝙蝠算法(BA)技术,命名为(SASDL);提出的第二种技术是基于双向长短期记忆(BiLSTM)、注意力机制、树状LSTM和Q学习的强化学习,命名为(RBATQ)技术。这两种新颖的深度学习技术都在癫痫和精神分裂症EEG数据集上进行了测试,并对结果进行了全面分析,所有数据集都获得了超过93%的良好分类准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac0/9135179/c8aacf369850/lee1-3161837.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验