Suppr超能文献

基于深度学习的常染色体显性多囊肾病自动成像分类

Deep Learning-Based Automated Imaging Classification of ADPKD.

作者信息

Kim Youngwoo, Bu Seonah, Tao Cheng, Bae Kyongtae T

机构信息

Department of Computer Software Engineering, Kumoh National Institute of Technology, Republic of Korea.

Jeju Technology Application Division, Korea Institute of Industrial Technology, Republic of Korea.

出版信息

Kidney Int Rep. 2024 Apr 4;9(6):1802-1809. doi: 10.1016/j.ekir.2024.04.002. eCollection 2024 Jun.

Abstract

INTRODUCTION

The Mayo imaging classification model (MICM) requires a prestep qualitative assessment to determine whether a patient is in class 1 (typical) or class 2 (atypical), where patients assigned to class 2 are excluded from the MICM application.

METHODS

We developed a deep learning-based method to automatically classify class 1 and 2 from magnetic resonance (MR) images and provide classification confidence utilizing abdominal -weighted MR images from 486 subjects, where transfer learning was applied. In addition, the explainable artificial intelligence (XAI) method was illustrated to enhance the explainability of the automated classification results. For performance evaluations, confusion matrices were generated, and receiver operating characteristic curves were drawn to measure the area under the curve.

RESULTS

The proposed method showed excellent performance for the classification of class 1 (97.7%) and 2 (100%), where the combined test accuracy was 98.01%. The precision and recall for predicting class 1 were 1.00 and 0.98, respectively, with -score of 0.99; whereas those for predicting class 2 were 0.87 and 1.00, respectively, with -score of 0.93. The weighted averages of precision and recall were 0.98 and 0.98, respectively, showing the classification confidence scores whereas the XAI method well-highlighted contributing regions for the classification.

CONCLUSION

The proposed automated method can classify class 1 and 2 cases as accurately as the level of a human expert. This method may be a useful tool to facilitate clinical trials investigating different types of kidney morphology and for clinical management of patients with autosomal dominant polycystic kidney disease (ADPKD).

摘要

引言

梅奥影像分类模型(MICM)需要进行一个预步骤定性评估,以确定患者属于1类(典型)还是2类(非典型),其中被分配到2类的患者将被排除在MICM应用之外。

方法

我们开发了一种基于深度学习的方法,利用486名受试者的腹部加权磁共振(MR)图像自动将1类和2类进行分类,并提供分类置信度,其中应用了迁移学习。此外,还阐述了可解释人工智能(XAI)方法,以增强自动分类结果的可解释性。为了进行性能评估,生成了混淆矩阵,并绘制了受试者操作特征曲线以测量曲线下面积。

结果

所提出的方法在1类(97.7%)和2类(100%)的分类中表现出色,综合测试准确率为98.01%。预测1类的精确率和召回率分别为1.00和0.98,F1值为0.99;而预测2类的精确率和召回率分别为0.87和1.00,F1值为0.93。精确率和召回率的加权平均值分别为0.98和0.98,显示了分类置信度得分,而XAI方法很好地突出了分类的贡献区域。

结论

所提出的自动化方法能够像人类专家一样准确地对1类和2类病例进行分类。该方法可能是促进研究不同类型肾脏形态的临床试验以及常染色体显性多囊肾病(ADPKD)患者临床管理的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f00d/11184252/a9090004a790/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验