Suppr超能文献

常染色体显性多囊肾病患者腹部MR图像中肝脏及肝囊肿的自动分割

Automated segmentation of liver and liver cysts from bounded abdominal MR images in patients with autosomal dominant polycystic kidney disease.

作者信息

Kim Youngwoo, Bae Sonu K, Cheng Tianming, Tao Cheng, Ge Yinghui, Chapman Arlene B, Torres Vincente E, Yu Alan S L, Mrug Michal, Bennett William M, Flessner Michael F, Landsittel Doug P, Bae Kyongtae T

机构信息

Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.

出版信息

Phys Med Biol. 2016 Nov 21;61(22):7864-7880. doi: 10.1088/0031-9155/61/22/7864. Epub 2016 Oct 25.

Abstract

Liver and liver cyst volume measurements are important quantitative imaging biomarkers for assessment of disease progression in autosomal dominant polycystic kidney disease (ADPKD) and polycystic liver disease (PLD). To date, no study has presented automated segmentation and volumetric computation of liver and liver cysts in these populations. In this paper, we proposed an automated segmentation framework for liver and liver cysts from bounded abdominal MR images in patients with ADPKD. To model the shape and variations in ADPKD livers, the spatial prior probability map (SPPM) of liver location and the tissue prior probability maps (TPPMs) of liver parenchymal tissue intensity and cyst morphology were generated. Formulated within a three-dimensional level set framework, the TPPMs successfully captured liver parenchymal tissues and cysts, while the SPPM globally constrained the initial surfaces of the liver into the desired boundary. Liver cysts were extracted by combined operations of the TPPMs, thresholding, and false positive reduction based on spatial prior knowledge of kidney cysts and distance map. With cross-validation for the liver segmentation, the agreement between the radiology expert and the proposed method was 84% for shape congruence and 91% for volume measurement assessed by the intra-class correlation coefficient (ICC). For the liver cyst segmentation, the agreement between the reference method and the proposed method was ICC  =  0.91 for cyst volumes and ICC  =  0.94 for % cyst-to-liver volume.

摘要

肝脏及肝囊肿体积测量是评估常染色体显性多囊肾病(ADPKD)和多囊肝病(PLD)疾病进展的重要定量成像生物标志物。迄今为止,尚无研究报道对这些人群的肝脏及肝囊肿进行自动分割和体积计算。在本文中,我们提出了一种从ADPKD患者的腹部边界磁共振图像中自动分割肝脏及肝囊肿的框架。为了对ADPKD肝脏的形状和变异进行建模,生成了肝脏位置的空间先验概率图(SPPM)以及肝实质组织强度和囊肿形态的组织先验概率图(TPPM)。在三维水平集框架内制定,TPPM成功捕获了肝实质组织和囊肿,而SPPM全局地将肝脏的初始表面约束到所需边界。基于肾囊肿的空间先验知识和距离图,通过TPPM、阈值处理和假阳性减少的联合操作提取肝囊肿。通过对肝脏分割的交叉验证,放射学专家与所提出方法之间在形状一致性方面的一致性为84%,通过组内相关系数(ICC)评估的体积测量一致性为91%。对于肝囊肿分割,参考方法与所提出方法之间在囊肿体积方面的一致性为ICC = 0.91,在囊肿与肝脏体积百分比方面的一致性为ICC = 0.94。

相似文献

6
Complex liver cysts in Autosomal Dominant Polycystic Kidney Disease.常染色体显性多囊肾病中的复杂肝囊肿。
Clin Imaging. 2017 Nov-Dec;46:98-101. doi: 10.1016/j.clinimag.2017.07.014. Epub 2017 Jul 25.

引用本文的文献

1
Deep Learning-Based Automated Imaging Classification of ADPKD.基于深度学习的常染色体显性多囊肾病自动成像分类
Kidney Int Rep. 2024 Apr 4;9(6):1802-1809. doi: 10.1016/j.ekir.2024.04.002. eCollection 2024 Jun.

本文引用的文献

4
Liver involvement in early autosomal-dominant polycystic kidney disease.肝脏受累于早期常染色体显性多囊肾病。
Clin Gastroenterol Hepatol. 2015 Jan;13(1):155-64.e6. doi: 10.1016/j.cgh.2014.07.051. Epub 2014 Aug 9.
7
Liver segmentation in MRI: A fully automatic method based on stochastic partitions.MRI 中的肝脏分割:一种基于随机划分的全自动方法。
Comput Methods Programs Biomed. 2014 Apr;114(1):11-28. doi: 10.1016/j.cmpb.2013.12.022. Epub 2014 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验