Humeres Claudio, Shinde Arti V, Tuleta Izabela, Hernandez Silvia C, Hanna Anis, Huang Shuaibo, Venugopal Harikrishnan, Aguilan Jennifer T, Conway Simon J, Sidoli Simone, Frangogiannis Nikolaos G
Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute (C.H., A.V.S., I.T., S.C.H., A.H., S.H., H.V., N.G.F.), Indiana University School of Medicine, Indianapolis.
Department of Microbiology and Immunology (C.H., A.V.S., I.T., S.C.H., A.H., S.H., H.V., N.G.F.), Indiana University School of Medicine, Indianapolis.
Circ Res. 2024 Jul 19;135(3):453-469. doi: 10.1161/CIRCRESAHA.123.323360. Epub 2024 Jun 20.
Cardiac fibroblast activation contributes to adverse remodeling, fibrosis, and dysfunction in the pressure-overloaded heart. Although early fibroblast TGF-β (transforming growth factor-β)/Smad (small mother against decapentaplegic)-3 activation protects the pressure-overloaded heart by preserving the matrix, sustained TGF-β activation is deleterious, accentuating fibrosis and dysfunction. Thus, endogenous mechanisms that negatively regulate the TGF-β response in fibroblasts may be required to protect from progressive fibrosis and adverse remodeling. We hypothesized that Smad7, an inhibitory Smad that restrains TGF-β signaling, may be induced in the pressure-overloaded myocardium and may regulate fibrosis, remodeling, and dysfunction.
The effects of myofibroblast-specific Smad7 loss were studied in a mouse model of transverse aortic constriction, using echocardiography, histological analysis, and molecular analysis. Proteomic studies in S7KO (Smad7 knockout) and overexpressing cells were used to identify fibroblast-derived mediators modulated by Smad7. In vitro experiments using cultured cardiac fibroblasts, fibroblasts populating collagen lattices, and isolated macrophages were used to dissect the molecular signals responsible for the effects of Smad7.
Following pressure overload, Smad7 was upregulated in cardiac myofibroblasts. TGF-β and angiotensin II stimulated fibroblast Smad7 upregulation via Smad3, whereas GDF15 (growth differentiation factor 15) induced Smad7 through GFRAL (glial cell line-derived neurotrophic factor family receptor α-like). MFS7KO (myofibroblast-specific S7KO) mice had increased mortality, accentuated systolic dysfunction and dilative remodeling, and accelerated diastolic dysfunction in response to transverse aortic constriction. Increased dysfunction in MFS7KO hearts was associated with accentuated fibrosis and increased MMP (matrix metalloproteinase)-2 activity and collagen denaturation. Secretomic analysis showed that Smad7 loss accentuates secretion of structural collagens and matricellular proteins and markedly increases MMP2 secretion. In contrast, Smad7 overexpression reduced MMP2 levels. In fibroblasts populating collagen lattices, the effects of Smad7 on fibroblast-induced collagen denaturation and pad contraction were partly mediated via MMP2 downregulation. Surprisingly, MFS7KO mice also exhibited significant macrophage expansion caused by paracrine actions of Smad7 null fibroblasts that stimulate macrophage proliferation and fibrogenic activation. Macrophage activation involved the combined effects of the fibroblast-derived matricellular proteins CD5L (CD5 antigen-like), SPARC (secreted protein acidic and rich in cysteine), CTGF (connective tissue growth factor), ECM1 (extracellular matrix protein 1), and TGFBI (TGFB induced).
The antifibrotic effects of Smad7 in the pressure-overloaded heart protect from dysfunction and involve not only reduction in collagen deposition but also suppression of MMP2-mediated matrix denaturation and paracrine effects that suppress macrophage activation through inhibition of matricellular proteins.
心脏成纤维细胞激活会导致压力超负荷心脏出现不良重塑、纤维化和功能障碍。虽然早期成纤维细胞转化生长因子-β(TGF-β)/Smad(抗五聚体小母亲)-3激活通过维持基质来保护压力超负荷心脏,但持续的TGF-β激活是有害的,会加剧纤维化和功能障碍。因此,可能需要内源性机制来负向调节成纤维细胞中的TGF-β反应,以防止进行性纤维化和不良重塑。我们推测,Smad7作为一种抑制TGF-β信号传导的抑制性Smad,可能在压力超负荷心肌中被诱导,并可能调节纤维化、重塑和功能障碍。
在主动脉缩窄小鼠模型中,使用超声心动图、组织学分析和分子分析,研究了肌成纤维细胞特异性Smad7缺失的影响。在S7KO(Smad7基因敲除)和过表达细胞中进行蛋白质组学研究,以鉴定受Smad7调节的成纤维细胞衍生介质。使用培养的心脏成纤维细胞、填充胶原晶格的成纤维细胞和分离的巨噬细胞进行体外实验,以剖析负责Smad7作用的分子信号。
压力超负荷后,心脏肌成纤维细胞中Smad7上调。TGF-β和血管紧张素II通过Smad3刺激成纤维细胞Smad7上调,而生长分化因子15(GDF15)通过胶质细胞系衍生神经营养因子家族受体α样(GFRAL)诱导Smad7。肌成纤维细胞特异性S7KO(MFS7KO)小鼠在主动脉缩窄后死亡率增加、收缩功能障碍和扩张性重塑加重,舒张功能障碍加速。MFS7KO心脏功能障碍增加与纤维化加重、基质金属蛋白酶-2(MMP-2)活性增加和胶原变性有关。分泌组分析表明,Smad7缺失会加剧结构胶原和基质细胞蛋白的分泌,并显著增加MMP2的分泌。相反,Smad7过表达会降低MMP2水平。在填充胶原晶格的成纤维细胞中,Smad7对成纤维细胞诱导的胶原变性和垫收缩的影响部分是通过下调MMP2介导的。令人惊讶的是,MFS7KO小鼠还表现出由Smad7缺失的成纤维细胞的旁分泌作用引起的显著巨噬细胞扩增,这些成纤维细胞刺激巨噬细胞增殖和纤维化激活。巨噬细胞激活涉及成纤维细胞衍生的基质细胞蛋白CD5抗原样(CD5L)、富含半胱氨酸的酸性分泌蛋白(SPARC)、结缔组织生长因子(CTGF)、细胞外基质蛋白1(ECM1)和TGFβ诱导蛋白(TGFBI)的联合作用。
Smad7在压力超负荷心脏中的抗纤维化作用可防止功能障碍,不仅涉及减少胶原沉积,还涉及抑制MMP2介导的基质变性以及通过抑制基质细胞蛋白来抑制巨噬细胞激活的旁分泌作用。