The Jackson Laboratory, Bar Harbor, ME (M.A.M., D.A.S., G.T.S., R.P., N.A.R.).
Graduate School of Biomedical Sciences, Tufts University, Boston, MA (M.A.M.).
Circulation. 2020 Oct 13;142(15):1448-1463. doi: 10.1161/CIRCULATIONAHA.119.045115. Epub 2020 Jul 30.
Cardiac fibrosis is a key antecedent to many types of cardiac dysfunction including heart failure. Physiological factors leading to cardiac fibrosis have been recognized for decades. However, the specific cellular and molecular mediators that drive cardiac fibrosis, and the relative effect of disparate cell populations on cardiac fibrosis, remain unclear.
We developed a novel cardiac single-cell transcriptomic strategy to characterize the cardiac cellulome, the network of cells that forms the heart. This method was used to profile the cardiac cellular ecosystem in response to 2 weeks of continuous administration of angiotensin II, a profibrotic stimulus that drives pathological cardiac remodeling.
Our analysis provides a comprehensive map of the cardiac cellular landscape uncovering multiple cell populations that contribute to pathological remodeling of the extracellular matrix of the heart. Two phenotypically distinct fibroblast populations, Fibroblast- and Fibroblast-, emerged after induction of tissue stress to promote fibrosis in the absence of smooth muscle actin-expressing myofibroblasts, a key profibrotic cell population. After angiotensin II treatment, Fibroblast- develops as the most abundant fibroblast subpopulation and the predominant fibrogenic cell type. Mapping intercellular communication networks within the heart, we identified key intercellular trophic relationships and shifts in cellular communication after angiotensin II treatment that promote the development of a profibrotic cellular microenvironment. Furthermore, the cellular responses to angiotensin II and the relative abundance of fibrogenic cells were sexually dimorphic.
These results offer a valuable resource for exploring the cardiac cellular landscape in health and after chronic cardiovascular stress. These data provide insights into the cellular and molecular mechanisms that promote pathological remodeling of the mammalian heart, highlighting early transcriptional changes that precede chronic cardiac fibrosis.
心肌纤维化是多种类型的心脏功能障碍(包括心力衰竭)的关键前提。几十年来,人们已经认识到导致心肌纤维化的生理因素。然而,导致心肌纤维化的特定细胞和分子介质,以及不同细胞群体对心肌纤维化的相对影响仍不清楚。
我们开发了一种新的心脏单细胞转录组学策略来描述心脏细胞组,即形成心脏的细胞网络。该方法用于分析心脏细胞生态系统对 2 周连续给予血管紧张素 II 的反应,血管紧张素 II 是一种促纤维化刺激物,可驱动病理性心脏重构。
我们的分析提供了心脏细胞景观的综合图谱,揭示了多个细胞群体对心脏细胞外基质病理性重塑的贡献。在组织应激诱导后,出现了两种表型上明显不同的成纤维细胞群体,即 Fibroblast- 和 Fibroblast-。在缺乏表达平滑肌肌动蛋白的肌成纤维细胞的情况下,这两种成纤维细胞群体促进纤维化。在血管紧张素 II 治疗后,Fibroblast- 作为最丰富的成纤维细胞亚群和主要的成纤维细胞类型出现。在心脏内绘制细胞间通讯网络,我们确定了关键的细胞间营养关系,并在血管紧张素 II 治疗后观察到细胞通讯的转变,这促进了促纤维化的细胞微环境的发展。此外,对血管紧张素 II 的细胞反应和促纤维化细胞的相对丰度存在性别二态性。
这些结果为探索健康和慢性心血管应激后心脏细胞景观提供了有价值的资源。这些数据为研究促进哺乳动物心脏病理性重构的细胞和分子机制提供了深入了解,突出了慢性心肌纤维化之前的早期转录变化。