Department of Medicine, Aab Cardiovascular Research Institute (X.L., R.M.B., J.K.L., R.A.D., B.K., Y.C., D.M.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY.
Department of Pharmacology and Physiology (E.M.S., X.L.), University of Rochester, NY.
Circ Res. 2023 Jul 21;133(3):271-287. doi: 10.1161/CIRCRESAHA.121.320324. Epub 2023 Jul 6.
Cardiomyopathy is characterized by the pathological accumulation of resident cardiac fibroblasts that deposit ECM (extracellular matrix) and generate a fibrotic scar. However, the mechanisms that control the timing and extent of cardiac fibroblast proliferation and ECM production are not known, hampering the development of antifibrotic strategies to prevent heart failure.
We used the Tcf21 (transcription factor 21) mouse line for fibroblast-specific lineage tracing and (tumor protein p53) gene deletion. We characterized cardiac physiology and used single-cell RNA-sequencing and in vitro studies to investigate the p53-dependent mechanisms regulating cardiac fibroblast cell cycle and fibrosis in left ventricular pressure overload induced by transaortic constriction.
Cardiac fibroblast proliferation occurs primarily between days 7 and 14 following transaortic constriction in mice, correlating with alterations in p53-dependent gene expression. p53 deletion in fibroblasts led to a striking accumulation of Tcf21-lineage cardiac fibroblasts within the normal proliferative window and precipitated a robust fibrotic response to left ventricular pressure overload. However, excessive interstitial and perivascular fibrosis does not develop until after cardiac fibroblasts exit the cell cycle. Single-cell RNA sequencing revealed null fibroblasts unexpectedly express lower levels of genes encoding important ECM proteins while they exhibit an inappropriately proliferative phenotype. in vitro studies establish a role for p53 in suppressing the proliferative fibroblast phenotype, which facilitates the expression and secretion of ECM proteins. Importantly, (cyclin-dependent kinase inhibitor 2a) expression and the p16-retinoblastoma cell cycle control pathway is induced in null cardiac fibroblasts, which may eventually contribute to cell cycle exit and fulminant scar formation.
This study reveals a mechanism regulating cardiac fibroblast accumulation and ECM secretion, orchestrated in part by p53-dependent cell cycle control that governs the timing and extent of fibrosis in left ventricular pressure overload.
心肌病的特征是病理性积累驻留的心肌成纤维细胞,这些细胞会沉积细胞外基质(extracellular matrix,ECM)并产生纤维疤痕。然而,控制心肌成纤维细胞增殖和 ECM 产生的时间和程度的机制尚不清楚,这阻碍了抗纤维化策略的发展,以防止心力衰竭。
我们使用 Tcf21(转录因子 21)小鼠系进行成纤维细胞特异性谱系追踪和 p53(肿瘤蛋白 p53)基因缺失。我们对心脏生理学进行了特征描述,并使用单细胞 RNA 测序和体外研究来研究 p53 依赖性机制,这些机制调节了主动脉缩窄诱导的左心室压力超负荷下的心肌成纤维细胞细胞周期和纤维化。
在主动脉缩窄后第 7 天至第 14 天,心肌成纤维细胞增殖主要发生在小鼠中,这与 p53 依赖性基因表达的改变相关。成纤维细胞中 p53 的缺失导致在正常增殖窗口内 Tcf21 谱系的心肌成纤维细胞大量积累,并引发了对左心室压力超负荷的强烈纤维反应。然而,直到心肌成纤维细胞退出细胞周期后,才会出现过度的间质和血管周围纤维化。单细胞 RNA 测序显示,null 成纤维细胞出人意料地表达较低水平的编码重要 ECM 蛋白的基因,同时表现出不适当的增殖表型。体外研究确立了 p53 在抑制增殖性成纤维细胞表型中的作用,这有助于 ECM 蛋白的表达和分泌。重要的是,null 心肌成纤维细胞中 cyclin-dependent kinase inhibitor 2a(细胞周期蛋白依赖性激酶抑制剂 2a)的表达和 p16-retinoblastoma 细胞周期控制途径被诱导,这可能最终导致细胞周期退出和纤维疤痕的迅速形成。
这项研究揭示了一种调节心肌成纤维细胞积累和 ECM 分泌的机制,部分由 p53 依赖性细胞周期控制协调,该机制控制了左心室压力超负荷下纤维化的时间和程度。