Suppr超能文献

一种基于深度学习的用于预测糖尿病视网膜病变进展的ADRPPA算法。

A deep learning-based ADRPPA algorithm for the prediction of diabetic retinopathy progression.

作者信息

Wang Victoria Y, Lo Men-Tzung, Chen Ta-Ching, Huang Chu-Hsuan, Huang Adam, Wang Pa-Chun

机构信息

Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA.

Department of Biomedical Sciences and Engineering, National Central University, Research Center Building 3, Room 404, 300 Zhongda Rd, Zhong-Li, Taoyuan, Taiwan.

出版信息

Sci Rep. 2024 Dec 30;14(1):31772. doi: 10.1038/s41598-024-82884-9.

Abstract

As an alternative to assessments performed by human experts, artificial intelligence (AI) is currently being used for screening fundus images and monitoring diabetic retinopathy (DR). Although AI models can provide quasi-clinician diagnoses, they rarely offer new insights to assist clinicians in predicting disease prognosis and treatment response. Using longitudinal retinal imaging data, we developed and validated a predictive model for DR progression: AI-driven Diabetic Retinopathy Progression Prediction Algorithm (ADRPPA). In this retrospective study, we analyzed paired retinal fundus images of the same eye captured at ≥ 1-year intervals. The analysis was performed using the EyePACS dataset. By analyzing 12,768 images from 6384 eyes (2 images/eye, taken 733 ± 353 days apart), each annotated with DR severity grades, we trained the neural network ResNeXt to automatically determine DR severity. EyePACS data corresponding to 5108 (80%), 639 (10%), and 637 (10%) eyes were used for model training, validation, and testing, respectively. We further used an independent e-ophtha dataset comprising 148 images annotated with microaneurysms, 118 (75%) and 30 (25%) of which were used for training and validation, respectively. This dataset was used to train the neural network Mask Region-based Convolutional Neural Network (Mask-RCNN) for quantifying microaneurysms. The DR and microaneurysm scores from the first nonreferable DR (NRDR) image of each eye were used to predict progression to referable DR (RDR) in the second image. The area under the receiver operating characteristic curve values indicating our model's performance in diagnosing RDR were 0.963, 0.970, 0.968, and 0.971 for the trained ResNeXt models with input image resolutions of 256 × 256, 512 × 512, 768 × 768, and 1024 × 1024 pixels, respectively. In the validation of the Mask-RCNN model trained on the e-ophtha dataset resized to 1600 pixels in height, the recall, precision, and F1-score values for detecting individual microaneurysms were 0.786, 0.615, and 0.690, respectively. The best model combination for predicting NRDR-to-RDR progression included the 768-pixel ResNeXt and 1600-pixel Mask-RCNN models; this combination achieved recall, precision, and F1-scores of 0.338 (95% confidence interval [CI]: 0.228-0.451), 0.561 (95% CI: 0.405-0.714), and 0.422 (95% CI: 0.299-0.532), respectively. Thus, deep learning models can be trained on longitudinal retinal imaging data to predict NRDR-to-RDR progression. Furthermore, DR and microaneurysm scores generated from low- and high-resolution fundus images, respectively, can help identify patients at a high risk of NRDR, facilitating timely treatment.

摘要

作为人类专家进行评估的替代方法,人工智能(AI)目前正用于眼底图像筛查和糖尿病视网膜病变(DR)监测。尽管AI模型可以提供类似临床医生的诊断,但它们很少能提供新的见解来帮助临床医生预测疾病预后和治疗反应。利用纵向视网膜成像数据,我们开发并验证了一种DR进展预测模型:人工智能驱动的糖尿病视网膜病变进展预测算法(ADRPPA)。在这项回顾性研究中,我们分析了以≥1年的间隔拍摄的同一只眼睛的配对眼底图像。分析使用EyePACS数据集进行。通过分析来自6384只眼睛的12768张图像(每只眼睛2张图像,间隔733±353天拍摄),每张图像都标注了DR严重程度等级,我们训练了神经网络ResNeXt以自动确定DR严重程度。分别对应5108只(80%)、639只(10%)和637只(10%)眼睛的EyePACS数据用于模型训练、验证和测试。我们还使用了一个独立的e-ophtha数据集,该数据集包含148张标注有微动脉瘤的图像,其中118张(75%)和30张(25%)分别用于训练和验证。该数据集用于训练基于掩码区域的卷积神经网络(Mask-RCNN)以量化微动脉瘤。每只眼睛第一张非增殖性DR(NRDR)图像的DR和微动脉瘤评分用于预测第二张图像中进展为增殖性DR(RDR)的情况。对于输入图像分辨率分别为256×256、512×512、768×768和1024×1024像素的训练后的ResNeXt模型,表明我们模型在诊断RDR方面性能的受试者工作特征曲线下面积值分别为0.963、0.970、0.968和0.971。在对在高度调整为1600像素的e-ophtha数据集上训练的Mask-RCNN模型进行验证时,检测单个微动脉瘤的召回率、精确率和F1分数值分别为0.786、0.615和0.690。预测NRDR到RDR进展的最佳模型组合包括768像素的ResNeXt和1600像素的Mask-RCNN模型;该组合的召回率、精确率和F1分数分别为0.338(95%置信区间[CI]:0.228 - 0.451)、0.561(95%CI:0.405 - 0.714)和0.422(95%CI:0.299 - 0.532)。因此,可以在纵向视网膜成像数据上训练深度学习模型以预测NRDR到RDR的进展。此外,分别从低分辨率和高分辨率眼底图像生成的DR和微动脉瘤评分可以帮助识别NRDR高风险患者,促进及时治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fda/11686301/c95edd6be4fb/41598_2024_82884_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验