Suppr超能文献

基于机器学习对血癌住院患者因重大心脏不良事件导致的非计划再入院的预测

Machine Learning-Based Prediction of Unplanned Readmission Due to Major Adverse Cardiac Events Among Hospitalized Patients with Blood Cancers.

作者信息

Le Nguyen, Han Sola, Kenawy Ahmed S, Kim Yeijin, Park Chanhyun

机构信息

Health Outcomes Division, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.

出版信息

Cancer Control. 2025 Jan-Dec;32:10732748251332803. doi: 10.1177/10732748251332803. Epub 2025 Apr 17.

Abstract

BackgroundHospitalized patients with blood cancer face an elevated risk for cardiovascular diseases caused by cardiotoxic cancer therapies, which can lead to cardiovascular-related unplanned readmissions.ObjectiveWe aimed to develop a machine learning (ML) model to predict 90-day unplanned readmissions for major adverse cardiovascular events (MACE) in hospitalized patients with blood cancers.DesignA retrospective population-based cohort study.MethodsWe analyzed patients aged ≥18 with blood cancers (leukemia, lymphoma, myeloma) using the Nationwide Readmissions Database. MACE included acute myocardial infarction, ischemic heart disease, stroke, heart failure, revascularization, malignant arrhythmias, and cardiovascular-related death. Six ML algorithms (L2-Logistic regression, Support Vector Machine, Complement Naïve Bayes, Random Forest, XGBoost, and CatBoost) were trained on 2017-2018 data and tested on 2019 data. The SuperLearner algorithm was used for stacking models. Cost-sensitive learning addressed data imbalance, and hyperparameters were tuned using 5-fold cross-validation with Optuna framework. Performance metrics included the Area Under the Receiver Operating Characteristics Curve (ROCAUC), Precision-Recall AUC (PRAUC), balanced Brier score, and F2 score. SHapley Additive exPlanations (SHAP) values assessed feature importance, and clustering analysis identified high-risk subpopulations.ResultsAmong 76 957 patients, 1031 (1.34%) experienced unplanned 90-day MACE-related readmissions. CatBoost achieved the highest ROCAUC (0.737, 95% CI: 0.712-0.763) and PRAUC (0.040, 95% CI: 0.033-0.050). The SuperLearner algorithm achieved slight improvements in most performance metrics. Four leading predictive features were consistently identified across algorithms, including older age, heart failure, coronary atherosclerosis, and cardiac dysrhythmias. Twenty-three clusters were determined with the highest-risk cluster (mean log odds of 1.41) identified by nonrheumatic/unspecified valve disorders, coronary atherosclerosis, and heart failure.ConclusionsOur ML model effectively predicts MACE-related readmissions in hospitalized patients with blood cancers, highlighting key predictors. Targeted discharge strategies may help reduce readmissions and alleviate the associated healthcare burden.

摘要

背景

血液癌症住院患者因心脏毒性癌症治疗面临心血管疾病风险升高,这可能导致与心血管相关的非计划再入院。

目的

我们旨在开发一种机器学习(ML)模型,以预测血液癌症住院患者90天内主要不良心血管事件(MACE)的非计划再入院情况。

设计

一项基于人群的回顾性队列研究。

方法

我们使用全国再入院数据库分析了年龄≥18岁的血液癌症(白血病、淋巴瘤、骨髓瘤)患者。MACE包括急性心肌梗死、缺血性心脏病、中风、心力衰竭、血运重建、恶性心律失常和心血管相关死亡。六种ML算法(L2逻辑回归、支持向量机、补充朴素贝叶斯、随机森林、XGBoost和CatBoost)在2017 - 2018年数据上进行训练,并在2019年数据上进行测试。使用SuperLearner算法进行模型堆叠。成本敏感学习解决数据不平衡问题,并使用Optuna框架通过5折交叉验证调整超参数。性能指标包括受试者操作特征曲线下面积(ROCAUC)、精确召回率AUC(PRAUC)、平衡Brier评分和F2评分。SHapley加性解释(SHAP)值评估特征重要性,聚类分析确定高危亚组。

结果

在76957名患者中,1031名(1.34%)经历了90天内与MACE相关的非计划再入院。CatBoost的ROCAUC最高(0.737,95%CI:0.712 - 0.763),PRAUC最高(0.040,95%CI:0.033 - 0.050)。SuperLearner算法在大多数性能指标上略有改进。四种主要预测特征在各算法中一致确定,包括老年、心力衰竭、冠状动脉粥样硬化和心律失常。确定了23个聚类,最高风险聚类(平均对数优势为1.41)由非风湿性/未指定瓣膜疾病、冠状动脉粥样硬化和心力衰竭确定。

结论

我们的ML模型有效预测血液癌症住院患者与MACE相关的再入院情况,突出了关键预测因素。有针对性的出院策略可能有助于减少再入院并减轻相关医疗负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd40/12035306/88017a770796/10.1177_10732748251332803-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验