Le Nguyen, Han Sola, Kenawy Ahmed S, Kim Yeijin, Park Chanhyun
Health Outcomes Division, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
Cancer Control. 2025 Jan-Dec;32:10732748251332803. doi: 10.1177/10732748251332803. Epub 2025 Apr 17.
BackgroundHospitalized patients with blood cancer face an elevated risk for cardiovascular diseases caused by cardiotoxic cancer therapies, which can lead to cardiovascular-related unplanned readmissions.ObjectiveWe aimed to develop a machine learning (ML) model to predict 90-day unplanned readmissions for major adverse cardiovascular events (MACE) in hospitalized patients with blood cancers.DesignA retrospective population-based cohort study.MethodsWe analyzed patients aged ≥18 with blood cancers (leukemia, lymphoma, myeloma) using the Nationwide Readmissions Database. MACE included acute myocardial infarction, ischemic heart disease, stroke, heart failure, revascularization, malignant arrhythmias, and cardiovascular-related death. Six ML algorithms (L2-Logistic regression, Support Vector Machine, Complement Naïve Bayes, Random Forest, XGBoost, and CatBoost) were trained on 2017-2018 data and tested on 2019 data. The SuperLearner algorithm was used for stacking models. Cost-sensitive learning addressed data imbalance, and hyperparameters were tuned using 5-fold cross-validation with Optuna framework. Performance metrics included the Area Under the Receiver Operating Characteristics Curve (ROCAUC), Precision-Recall AUC (PRAUC), balanced Brier score, and F2 score. SHapley Additive exPlanations (SHAP) values assessed feature importance, and clustering analysis identified high-risk subpopulations.ResultsAmong 76 957 patients, 1031 (1.34%) experienced unplanned 90-day MACE-related readmissions. CatBoost achieved the highest ROCAUC (0.737, 95% CI: 0.712-0.763) and PRAUC (0.040, 95% CI: 0.033-0.050). The SuperLearner algorithm achieved slight improvements in most performance metrics. Four leading predictive features were consistently identified across algorithms, including older age, heart failure, coronary atherosclerosis, and cardiac dysrhythmias. Twenty-three clusters were determined with the highest-risk cluster (mean log odds of 1.41) identified by nonrheumatic/unspecified valve disorders, coronary atherosclerosis, and heart failure.ConclusionsOur ML model effectively predicts MACE-related readmissions in hospitalized patients with blood cancers, highlighting key predictors. Targeted discharge strategies may help reduce readmissions and alleviate the associated healthcare burden.
背景
血液癌症住院患者因心脏毒性癌症治疗面临心血管疾病风险升高,这可能导致与心血管相关的非计划再入院。
目的
我们旨在开发一种机器学习(ML)模型,以预测血液癌症住院患者90天内主要不良心血管事件(MACE)的非计划再入院情况。
设计
一项基于人群的回顾性队列研究。
方法
我们使用全国再入院数据库分析了年龄≥18岁的血液癌症(白血病、淋巴瘤、骨髓瘤)患者。MACE包括急性心肌梗死、缺血性心脏病、中风、心力衰竭、血运重建、恶性心律失常和心血管相关死亡。六种ML算法(L2逻辑回归、支持向量机、补充朴素贝叶斯、随机森林、XGBoost和CatBoost)在2017 - 2018年数据上进行训练,并在2019年数据上进行测试。使用SuperLearner算法进行模型堆叠。成本敏感学习解决数据不平衡问题,并使用Optuna框架通过5折交叉验证调整超参数。性能指标包括受试者操作特征曲线下面积(ROCAUC)、精确召回率AUC(PRAUC)、平衡Brier评分和F2评分。SHapley加性解释(SHAP)值评估特征重要性,聚类分析确定高危亚组。
结果
在76957名患者中,1031名(1.34%)经历了90天内与MACE相关的非计划再入院。CatBoost的ROCAUC最高(0.737,95%CI:0.712 - 0.763),PRAUC最高(0.040,95%CI:0.033 - 0.050)。SuperLearner算法在大多数性能指标上略有改进。四种主要预测特征在各算法中一致确定,包括老年、心力衰竭、冠状动脉粥样硬化和心律失常。确定了23个聚类,最高风险聚类(平均对数优势为1.41)由非风湿性/未指定瓣膜疾病、冠状动脉粥样硬化和心力衰竭确定。
结论
我们的ML模型有效预测血液癌症住院患者与MACE相关的再入院情况,突出了关键预测因素。有针对性的出院策略可能有助于减少再入院并减轻相关医疗负担。