Bartmann Maximilian G, Glassner Sebastian, Sistani Masiar, Rurali Riccardo, Palummo Maurizia, Cartoixà Xavier, Smoliner Jürgen, Lugstein Alois
Institute for Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria.
Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain.
ACS Appl Mater Interfaces. 2024 Jul 3;16(26):33789-33795. doi: 10.1021/acsami.4c05477. Epub 2024 Jun 20.
In this work, we explore the effect of ultrahigh tensile strain on electrical transport properties of silicon. By integrating vapor-liquid-solid-grown nanowires into a micromechanical straining device, we demonstrate uniaxial tensile strain levels up to 9.5%. Thereby the triply degenerated phonon dispersion relation at the Γ-point of silicon disentangle and the longitudinal phonon modes are used to precisely determine the extent of mechanical strain. Simultaneous electrical transport measurements showed a significant enhancement in the electrical conductance. Aside from considerable reduction of the Si bulk resistivity due to strain-induced band gap narrowing, comparison with quasi-particle GW calculations further reveals that the effective Schottky barrier height at the electrical contacts undergoes a substantial reduction. For these reasons, nanowire devices with ultrastrained channels may be promising candidates for future applications of high-performance silicon-based devices.
在这项工作中,我们探究了超高拉伸应变对硅电学输运性质的影响。通过将气液固生长的纳米线集成到微机械应变装置中,我们展示了高达9.5%的单轴拉伸应变水平。由此,硅在Γ点处的三重简并声子色散关系得以解开,纵向声子模式被用于精确确定机械应变的程度。同时进行的电学输运测量表明电导有显著增强。除了由于应变诱导的带隙变窄导致硅体电阻率大幅降低外,与准粒子GW计算结果的比较进一步表明,电接触处的有效肖特基势垒高度大幅降低。基于这些原因,具有超应变沟道的纳米线器件可能是未来高性能硅基器件应用的有前途的候选者。