Hong Ki-Ha, Kim Jongseob, Lee Sung-Hoon, Shin Jai Kwang
Samsung Advanced Institute of Technology, Mt. 14-1, Nongseo-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do, 446-712, Korea.
Nano Lett. 2008 May;8(5):1335-40. doi: 10.1021/nl0734140. Epub 2008 Apr 11.
One of the major challenges toward Si nanowire (SiNW) based photonic devices is controlling the electronic band structure of the Si nanowire to obtain a direct band gap. Here, we present a new strategy for controlling the electronic band structure of Si nanowires. Our method is attributed to the band structure modulation driven by uniaxial strain. We show that the band structure modulation with lattice strain is strongly dependent on the crystal orientation and diameter of SiNWs. In the case of [100] and [111] SiNWs, tensile strain enhances the direct band gap characteristic, whereas compressive strain attenuates it. [110] SiNWs have a different strain dependence in that both compressive and tensile strain make SiNWs exhibit an indirect band gap. We discuss the origin of this strain dependence based on the band features of bulk silicon and the wave functions of SiNWs. These results could be helpful for band structure engineering and analysis of SiNWs in nanoscale devices.
基于硅纳米线(SiNW)的光子器件面临的主要挑战之一是控制硅纳米线的电子能带结构以获得直接带隙。在此,我们提出一种控制硅纳米线电子能带结构的新策略。我们的方法归因于单轴应变驱动的能带结构调制。我们表明,晶格应变引起的能带结构调制强烈依赖于硅纳米线的晶体取向和直径。对于[100]和[111]硅纳米线,拉伸应变增强直接带隙特性,而压缩应变则使其减弱。[110]硅纳米线具有不同的应变依赖性,即压缩应变和拉伸应变都会使硅纳米线呈现间接带隙。我们基于体硅的能带特征和硅纳米线的波函数讨论了这种应变依赖性的起源。这些结果可能有助于纳米级器件中硅纳米线的能带结构工程和分析。