Wei Ziyu, Yang Xi, Wang Nannan, Gao Xinbo
IEEE Trans Image Process. 2024;33:3880-3892. doi: 10.1109/TIP.2024.3414938. Epub 2024 Jun 26.
Visible infrared person re-identification (VI-ReID) exposes considerable challenges because of the modality gaps between the person images captured by daytime visible cameras and nighttime infrared cameras. Several fully-supervised VI-ReID methods have improved the performance with extensive labeled heterogeneous images. However, the identity of the person is difficult to obtain in real-world situations, especially at night. Limited known identities and large modality discrepancies impede the effectiveness of the model to a great extent. In this paper, we propose a novel Semi-Supervised Learning framework with Heterogeneous Distribution Consistency (HDC-SSL) for VI-ReID. Specifically, through investigating the confidence distribution of heterogeneous images, we introduce a Gaussian Mixture Model-based Pseudo Labeling (GMM-PL) method, which adaptively adjusts different thresholds for each modality to label the identity. Moreover, to facilitate the representation learning of unutilized data whose prediction is lower than the threshold, Modality Consistency Regularization (MCR) is proposed to ensure the prediction consistency of the cross-modality pedestrian images and handle the modality variance. Extensive experiments with different label settings on two VI-ReID datasets demonstrate the effectiveness of our method. Particularly, HDC-SSL achieves competitive performance with state-of-the-art fully-supervised VI-ReID methods on RegDB dataset with only 1 visible label and 1 infrared label per class.
可见光红外行人重识别(VI-ReID)由于白天可见光相机和夜间红外相机所拍摄的行人图像之间存在模态差异,面临着诸多挑战。一些全监督的VI-ReID方法通过大量带标签的异构图像提高了性能。然而,在现实世界中,尤其是在夜间,很难获取行人的身份信息。已知身份有限以及模态差异巨大在很大程度上阻碍了模型的有效性。在本文中,我们提出了一种用于VI-ReID的具有异构分布一致性的新型半监督学习框架(HDC-SSL)。具体而言,通过研究异构图像的置信度分布,我们引入了一种基于高斯混合模型的伪标签(GMM-PL)方法,该方法为每个模态自适应地调整不同阈值以标记身份。此外,为了促进对预测低于阈值的未利用数据的表征学习,我们提出了模态一致性正则化(MCR),以确保跨模态行人图像的预测一致性并处理模态差异。在两个VI-ReID数据集上进行的不同标签设置的大量实验证明了我们方法的有效性。特别是,HDC-SSL在RegDB数据集上,每类仅1个可见光标签和1个红外标签的情况下,与最先进的全监督VI-ReID方法取得了具有竞争力的性能。