Suppr超能文献

面向医疗保健能力需求可靠预测:范围综述和证据绘图。

Towards reliable forecasting of healthcare capacity needs: A scoping review and evidence mapping.

机构信息

Psychiatry, Aalborg University Hospital, Aalborg, Denmark; Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.

Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Aalborg University Hospital - Research, Education and Innovation, Aalborg, Denmark.

出版信息

Int J Med Inform. 2024 Sep;189:105527. doi: 10.1016/j.ijmedinf.2024.105527. Epub 2024 Jun 14.

Abstract

BACKGROUND

The COVID-19 pandemic has highlighted the critical importance of robust healthcare capacity planning and preparedness for emerging crises. However, healthcare systems must also adapt to more gradual temporal changes in disease prevalence and demographic composition over time. To support proactive healthcare planning, statistical capacity forecasting models can provide valuable information to healthcare planners. This systematic literature review and evidence mapping aims to identify and describe studies that have used statistical forecasting models to estimate healthcare capacity needs within hospital settings.

METHOD

Studies were identified in the databases MEDLINE and Embase and screened for relevance before items were defined and extracted within the following categories: forecast methodology, measure of capacity, forecast horizon, healthcare setting, target diagnosis, validation methods, and implementation.

RESULTS

84 studies were selected, all focusing on various capacity outcomes, including number of hospital beds/ patients, staffing, and length of stay. The selected studies employed different analytical models grouped in six items; discrete event simulation (N = 13, 15 %), generalized linear models (N = 21, 25 %), rate multiplication (N = 15, 18 %), compartmental models (N = 14, 17 %), time series analysis (N = 22, 26 %), and machine learning not otherwise categorizable (N = 12, 14 %). The review further provides insights into disease areas with infectious diseases (N = 24, 29 %) and cancer (N = 12, 14 %) being predominant, though several studies forecasted healthcare capacity needs in general (N = 24, 29 %). Only about half of the models were validated using either temporal validation (N = 39, 46 %), cross-validation (N = 2, 2 %) or/and geographical validation (N = 4, 5 %).

CONCLUSION

The forecasting models' applicability can serve as a resource for healthcare stakeholders involved in designing future healthcare capacity estimation. The lack of routine performance validation of the used algorithms is concerning. There is very little information on implementation and follow-up validation of capacity planning models.

摘要

背景

新冠疫情大流行凸显了强健的医疗保健能力规划和应对新危机的准备工作的至关重要性。然而,医疗保健系统还必须适应疾病流行和人口结构随时间的逐渐变化。为了支持积极主动的医疗保健规划,统计能力预测模型可以为医疗保健规划人员提供有价值的信息。本系统文献综述和证据图谱旨在确定和描述使用统计预测模型来估算医院环境中医疗保健能力需求的研究。

方法

在 MEDLINE 和 Embase 数据库中确定研究,并在确定和提取以下类别中的项目之前对其进行相关性筛选:预测方法、能力衡量、预测范围、医疗保健环境、目标诊断、验证方法和实施情况。

结果

选择了 84 项研究,这些研究均聚焦于各种能力结果,包括医院床位/患者数量、人员配备和住院时间。所选研究采用了不同的分析模型,分为六类:离散事件模拟(N=13,15%)、广义线性模型(N=21,25%)、速率乘法(N=15,18%)、房室模型(N=14,17%)、时间序列分析(N=22,26%)和不可分类的机器学习(N=12,14%)。综述进一步深入探讨了传染病(N=24,29%)和癌症(N=12,14%)领域的疾病,尽管有几项研究预测了一般的医疗保健能力需求(N=24,29%)。只有大约一半的模型使用时间验证(N=39,46%)、交叉验证(N=2,2%)或/和地理验证(N=4,5%)进行了验证。

结论

预测模型的适用性可以作为参与设计未来医疗保健能力估计的医疗保健利益相关者的资源。使用的算法缺乏常规性能验证令人担忧。关于能力规划模型的实施和后续验证的信息很少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验