Konduru Laalithya, Dahia Simranjeet Singh, Szabo Claudia, Barreto Savio G
College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
Healthynfinity Pvt Ltd, Chennai, India.
Cancer Control. 2025 Jan-Dec;32:10732748251321672. doi: 10.1177/10732748251321672.
Colorectal cancer (CRC) poses a significant global health challenge, with evolving demographic trends emphasizing the need for accurate forecasting models. Existing forecasting models lack comprehensive coverage. By integrating machine learning algorithms, this study aims to provide more accurate and precise predictions, filling critical gaps in understanding CRC incidence, death, and disability-adjusted life year (DALY) rate trends, especially in high socio-demographic index (SDI) regions. Specific emphasis is placed on exploring age-, sex-, and country-specific variations in CRC trends.
An ensemble forecasting algorithm integrating Simple Linear Regression, Exponential Smoothing, and Autoregressive Integrated Moving Average, capable of handling a short time series was developed and validated, utilizing a dataset encompassing age-, sex-, and country-specific CRC incidence, mortality, and DALY rates.
Our forecasting models reveal rising trends in CRC burden in the 15-49 years age group (young-onset) and decreasing trends in CRC burden in the 50-74 years age group (late-onset) in high SDI regions with sex-specific variations in incidence, mortality, and DALY rates. Some inflection points for demographic shifts in CRC disease burden, particularly death rates, were identified as early as within the next 5 years. We predict a shift in CRC burden towards females, particularly in older adults.
A novel multifactor model was developed for comparing the incidence, mortality, and DALY rates of young- and late-onset CRC in high SDI regions. The rising incidence of young-onset CRC in high SDI regions underscores the need for proactive health strategies. By refining predictive models, adjusting screening guidelines to target younger, high-risk populations, and investing in public awareness and research, we can facilitate early detection and improve outcomes. This study addresses a significant gap in CRC forecasting and provides a robust framework for anticipating demographic shifts in CRC burden, making it an indispensable tool for healthcare planning.
结直肠癌(CRC)对全球健康构成重大挑战,不断变化的人口趋势凸显了准确预测模型的必要性。现有的预测模型缺乏全面覆盖。通过整合机器学习算法,本研究旨在提供更准确精确的预测,填补在理解CRC发病率、死亡率和伤残调整生命年(DALY)率趋势方面的关键空白,特别是在高社会人口指数(SDI)地区。特别强调探索CRC趋势在年龄、性别和国家层面的特定差异。
开发并验证了一种集成简单线性回归、指数平滑和自回归积分移动平均的集成预测算法,该算法能够处理短时间序列,使用了一个包含年龄、性别和国家特定的CRC发病率、死亡率和DALY率的数据集。
我们的预测模型显示,在高SDI地区,15 - 49岁年龄组(早发型)的CRC负担呈上升趋势,50 - 74岁年龄组(晚发型)的CRC负担呈下降趋势,发病率、死亡率和DALY率存在性别差异。CRC疾病负担,特别是死亡率的一些人口结构转变拐点最早可在未来5年内出现。我们预测CRC负担将向女性转移,尤其是在老年人中。
开发了一种新颖的多因素模型,用于比较高SDI地区早发型和晚发型CRC的发病率、死亡率和DALY率。高SDI地区早发型CRC发病率的上升凸显了积极健康策略的必要性。通过完善预测模型、调整筛查指南以针对更年轻的高危人群以及投资于公众意识和研究,我们可以促进早期发现并改善治疗结果。本研究填补了CRC预测方面的重大空白,并为预测CRC负担的人口结构转变提供了一个强大的框架,使其成为医疗保健规划中不可或缺的工具。