Suppr超能文献

深度学习重建在腰椎 MRI 加速中的应用:一项前瞻性研究。

Deep learning reconstruction for lumbar spine MRI acceleration: a prospective study.

机构信息

Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200127, China.

MR Research Collaboration Team, Siemens Healthineers Ltd., Shanghai, China.

出版信息

Eur Radiol Exp. 2024 Jun 21;8(1):67. doi: 10.1186/s41747-024-00470-0.

Abstract

BACKGROUND

We compared magnetic resonance imaging (MRI) turbo spin-echo images reconstructed using a deep learning technique (TSE-DL) with standard turbo spin-echo (TSE-SD) images of the lumbar spine regarding image quality and detection performance of common degenerative pathologies.

METHODS

This prospective, single-center study included 31 patients (15 males and 16 females; aged 51 ± 16 years (mean ± standard deviation)) who underwent lumbar spine exams with both TSE-SD and TSE-DL acquisitions for degenerative spine diseases. Images were analyzed by two radiologists and assessed for qualitative image quality using a 4-point Likert scale, quantitative signal-to-noise ratio (SNR) of anatomic landmarks, and detection of common pathologies. Paired-sample t, Wilcoxon, and McNemar tests, unweighted/linearly weighted Cohen κ statistics, and intraclass correlation coefficients were used.

RESULTS

Scan time for TSE-DL and TSE-SD protocols was 2:55 and 5:17 min:s, respectively. The overall image quality was either significantly higher for TSE-DL or not significantly different between TSE-SD and TSE-DL. TSE-DL demonstrated higher SNR and subject noise scores than TSE-SD. For pathology detection, the interreader agreement was substantial to almost perfect for TSE-DL, with κ values ranging from 0.61 to 1.00; the interprotocol agreement was almost perfect for both readers, with κ values ranging from 0.84 to 1.00. There was no significant difference in the diagnostic confidence or detection rate of common pathologies between the two sequences (p ≥ 0.081).

CONCLUSIONS

TSE-DL allowed for a 45% reduction in scan time over TSE-SD in lumbar spine MRI without compromising the overall image quality and showed comparable detection performance of common pathologies in the evaluation of degenerative lumbar spine changes.

RELEVANCE STATEMENT

Deep learning-reconstructed lumbar spine MRI protocol enabled a 45% reduction in scan time compared with conventional reconstruction, with comparable image quality and detection performance of common degenerative pathologies.

KEY POINTS

• Lumbar spine MRI with deep learning reconstruction has broad application prospects. • Deep learning reconstruction of lumbar spine MRI saved 45% scan time without compromising overall image quality. • When compared with standard sequences, deep learning reconstruction showed similar detection performance of common degenerative lumbar spine pathologies.

摘要

背景

我们比较了使用深度学习技术(TSE-DL)重建的磁共振成像(MRI)涡轮自旋回波图像与标准涡轮自旋回波(TSE-SD)腰椎图像在常见退行性病变的图像质量和检测性能方面的差异。

方法

这项前瞻性、单中心研究纳入了 31 例患者(15 名男性和 16 名女性;年龄 51±16 岁(均值±标准差)),他们因退行性脊柱疾病行腰椎检查,同时接受 TSE-SD 和 TSE-DL 采集。由两位放射科医生对图像进行分析,并使用 4 分李克特量表评估定性图像质量、解剖标志的定量信噪比(SNR)和常见病变的检测。采用配对样本 t 检验、Wilcoxon 检验、McNemar 检验、未加权/线性加权 Cohen κ 统计量和组内相关系数。

结果

TSE-DL 和 TSE-SD 方案的扫描时间分别为 2:55 和 5:17min:s。总体图像质量要么 TSE-DL 明显更高,要么 TSE-SD 和 TSE-DL 之间无显著差异。TSE-DL 显示出比 TSE-SD 更高的 SNR 和受试者噪声评分。对于病变检测,两位读者的组内一致性均为高度一致至几乎完美,κ 值范围为 0.61 至 1.00;两位读者的组间协议均为几乎完美,κ 值范围为 0.84 至 1.00。两种序列之间常见病变的诊断置信度或检出率无显著差异(p≥0.081)。

结论

与 TSE-SD 相比,TSE-DL 可将腰椎 MRI 扫描时间减少 45%,而不影响整体图像质量,并在评估退行性腰椎变化时具有相似的常见病变检测性能。

重要性声明

与传统重建相比,基于深度学习的腰椎 MRI 重建方案能够将扫描时间减少 45%,同时保持图像质量和常见退行性病变的检测性能。

关键点

  • 腰椎磁共振成像的深度学习重建具有广泛的应用前景。

  • 腰椎磁共振成像的深度学习重建在不影响整体图像质量的情况下,将扫描时间缩短了 45%。

  • 与标准序列相比,深度学习重建在检测常见退行性腰椎病变方面具有相似的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0028/11189847/70b205426b48/41747_2024_470_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验