From the Departments of Medical and Biological Engineering (E.K.).
Korea Radioisotope Center for Pharmaceuticals (E.K.), Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.
AJNR Am J Neuroradiol. 2022 Nov;43(11):1653-1659. doi: 10.3174/ajnr.A7664. Epub 2022 Sep 29.
Synthetic MR imaging is a time-efficient technique. However, its rather long scan time can be challenging for children. This study aimed to evaluate the clinical feasibility of accelerated synthetic MR imaging with deep learning-based reconstruction in pediatric neuroimaging and to investigate the impact of deep learning-based reconstruction on image quality and quantitative values in synthetic MR imaging.
This study included 47 children 2.3-14.7 years of age who underwent both standard and accelerated synthetic MR imaging at 3T. The accelerated synthetic MR imaging was reconstructed using a deep learning pipeline. The image quality, lesion detectability, tissue values, and brain volumetry were compared among accelerated deep learning and accelerated and standard synthetic data sets.
The use of deep learning-based reconstruction in the accelerated synthetic scans significantly improved image quality for all contrast weightings (< .001), resulting in image quality comparable with or superior to that of standard scans. There was no significant difference in lesion detectability between the accelerated deep learning and standard scans ( > .05). The tissue values and brain tissue volumes obtained with accelerated deep learning and the other 2 scans showed excellent agreement and a strong linear relationship (all, > 0.9). The difference in quantitative values of accelerated scans versus accelerated deep learning scans was very small (tissue values, <0.5%; volumetry, -1.46%-0.83%).
The use of deep learning-based reconstruction in synthetic MR imaging can reduce scan time by 42% while maintaining image quality and lesion detectability and providing consistent quantitative values. The accelerated deep learning synthetic MR imaging can replace standard synthetic MR imaging in both contrast-weighted and quantitative imaging.
合成磁共振成像(MR 成像)是一种高效的技术。然而,其相对较长的扫描时间可能对儿童具有挑战性。本研究旨在评估基于深度学习的重建在儿科神经成像中加速合成 MR 成像的临床可行性,并研究基于深度学习的重建对合成 MR 成像中图像质量和定量值的影响。
本研究纳入了 47 名 2.3-14.7 岁的儿童,他们在 3T 上均进行了标准和加速的合成 MR 成像。使用深度学习管道重建加速的合成 MR 图像。比较了加速深度学习和加速及标准合成数据集之间的图像质量、病变检出率、组织值和脑容积。
在加速合成扫描中使用基于深度学习的重建可显著改善所有对比权重的图像质量(<0.001),其图像质量可与标准扫描相媲美或更优。加速深度学习和标准扫描之间的病变检出率无显著差异(>0.05)。加速深度学习和其他 2 种扫描获得的组织值和脑实质体积具有极好的一致性和很强的线性关系(均>0.9)。加速扫描与加速深度学习扫描的定量值差异非常小(组织值,<0.5%;容积,-1.46%至-0.83%)。
在合成 MR 成像中使用基于深度学习的重建可将扫描时间缩短 42%,同时保持图像质量和病变检出率,并提供一致的定量值。加速深度学习合成 MR 成像可替代标准合成 MR 成像,用于对比加权和定量成像。