Suppr超能文献

深度学习加速腰椎磁共振成像的诊断评估。

Diagnostic evaluation of deep learning accelerated lumbar spine MRI.

机构信息

Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA.

Harvard Medical School, USA.

出版信息

Neuroradiol J. 2024 Jun;37(3):323-331. doi: 10.1177/19714009231224428. Epub 2024 Jan 9.

Abstract

BACKGROUND AND PURPOSE

Deep learning (DL) accelerated MR techniques have emerged as a promising approach to accelerate routine MR exams. While prior studies explored DL acceleration for specific lumbar MRI sequences, a gap remains in comprehending the impact of a fully DL-based MRI protocol on scan time and diagnostic quality for routine lumbar spine MRI. To address this, we assessed the image quality and diagnostic performance of a DL-accelerated lumbar spine MRI protocol in comparison to a conventional protocol.

METHODS

We prospectively evaluated 36 consecutive outpatients undergoing non-contrast enhanced lumbar spine MRIs. Both protocols included sagittal T1, T2, STIR, and axial T2-weighted images. Two blinded neuroradiologists independently reviewed images for foraminal stenosis, spinal canal stenosis, nerve root compression, and facet arthropathy. Grading comparison employed the Wilcoxon signed rank test. For the head-to-head comparison, a 5-point Likert scale to assess image quality, considering artifacts, signal-to-noise ratio (SNR), anatomical structure visualization, and overall diagnostic quality. We applied a 15% noninferiority margin to determine whether the DL-accelerated protocol was noninferior.

RESULTS

No significant differences existed between protocols when evaluating foraminal and spinal canal stenosis, nerve compression, or facet arthropathy (all > .05). The DL-spine protocol was noninferior for overall diagnostic quality and visualization of the cord, CSF, intervertebral disc, and nerve roots. However, it exhibited reduced SNR and increased artifact perception. Interobserver reproducibility ranged from moderate to substantial (κ = 0.50-0.76).

CONCLUSION

Our study indicates that DL reconstruction in spine imaging effectively reduces acquisition times while maintaining comparable diagnostic quality to conventional MRI.

摘要

背景与目的

深度学习(DL)加速磁共振技术已成为加速常规磁共振检查的一种有前途的方法。虽然之前的研究探讨了特定腰椎 MRI 序列的 DL 加速,但对于完全基于 DL 的 MRI 协议对常规腰椎 MRI 的扫描时间和诊断质量的影响,仍存在理解上的差距。为了解决这个问题,我们评估了基于 DL 的腰椎 MRI 协议的图像质量和诊断性能,与常规协议进行比较。

方法

我们前瞻性评估了 36 例连续接受非增强腰椎 MRI 的门诊患者。两种方案均包括矢状 T1、T2、STIR 和轴位 T2 加权图像。两名盲法神经放射科医生独立评估图像,以评估椎间孔狭窄、椎管狭窄、神经根受压和小关节病。分级比较采用 Wilcoxon 符号秩检验。对于头对头比较,使用 5 分李克特量表评估图像质量,考虑伪影、信噪比(SNR)、解剖结构可视化和整体诊断质量。我们应用 15%的非劣效性边界来确定 DL 加速协议是否非劣效。

结果

在评估椎间孔和椎管狭窄、神经根压迫或小关节病时,两种方案之间没有显著差异(均>.05)。DL 脊柱协议在整体诊断质量和脊髓、CSF、椎间盘和神经根的可视化方面具有非劣效性。然而,它表现出降低的 SNR 和增加的伪影感知。观察者间的可重复性从中度到高度(κ=0.50-0.76)。

结论

我们的研究表明,DL 重建在脊柱成像中可以有效地减少采集时间,同时保持与常规 MRI 相当的诊断质量。

相似文献

1
Diagnostic evaluation of deep learning accelerated lumbar spine MRI.
Neuroradiol J. 2024 Jun;37(3):323-331. doi: 10.1177/19714009231224428. Epub 2024 Jan 9.
2
Deep learning-based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI.
Eur Radiol. 2023 Dec;33(12):8656-8668. doi: 10.1007/s00330-023-09918-0. Epub 2023 Jul 27.
3
Deep learning reconstruction for lumbar spine MRI acceleration: a prospective study.
Eur Radiol Exp. 2024 Jun 21;8(1):67. doi: 10.1186/s41747-024-00470-0.
4
Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging.
Eur J Radiol. 2024 Sep;178:111587. doi: 10.1016/j.ejrad.2024.111587. Epub 2024 Jul 3.
8
Deep learning reconstructed T2-weighted Dixon imaging of the spine: Impact on acquisition time and image quality.
Eur J Radiol. 2024 Sep;178:111633. doi: 10.1016/j.ejrad.2024.111633. Epub 2024 Jul 15.
9
Deep learning for automated, interpretable classification of lumbar spinal stenosis and facet arthropathy from axial MRI.
Eur Radiol. 2023 May;33(5):3435-3443. doi: 10.1007/s00330-023-09483-6. Epub 2023 Mar 15.
10
Deep Learning-Enhanced Accelerated 2D TSE and 3D Superresolution Dixon TSE for Rapid Comprehensive Knee Joint Assessment.
Invest Radiol. 2025 Mar 1;60(3):220-233. doi: 10.1097/RLI.0000000000001118. Epub 2024 Aug 28.

引用本文的文献

2
Applications of Artificial Intelligence and Machine Learning in Spine MRI.
Bioengineering (Basel). 2024 Sep 5;11(9):894. doi: 10.3390/bioengineering11090894.

本文引用的文献

2
Deep learning for automated, interpretable classification of lumbar spinal stenosis and facet arthropathy from axial MRI.
Eur Radiol. 2023 May;33(5):3435-3443. doi: 10.1007/s00330-023-09483-6. Epub 2023 Mar 15.
3
Rapid lumbar MRI protocol using 3D imaging and deep learning reconstruction.
Skeletal Radiol. 2023 Jul;52(7):1331-1338. doi: 10.1007/s00256-022-04268-2. Epub 2023 Jan 5.
5
Deep Learning Reconstruction for Accelerated Spine MRI: Prospective Analysis of Interchangeability.
Radiology. 2023 Mar;306(3):e212922. doi: 10.1148/radiol.212922. Epub 2022 Nov 1.
6
Deep-learning-reconstructed high-resolution 3D cervical spine MRI for foraminal stenosis evaluation.
Skeletal Radiol. 2023 Apr;52(4):725-732. doi: 10.1007/s00256-022-04211-5. Epub 2022 Oct 21.
7
Clinical validation of Wave-CAIPI susceptibility-weighted imaging for routine brain MRI at 1.5 T.
Eur Radiol. 2022 Oct;32(10):7128-7135. doi: 10.1007/s00330-022-08871-8. Epub 2022 Aug 4.
9
Evaluation of deep learning reconstructed high-resolution 3D lumbar spine MRI.
Eur Radiol. 2022 Sep;32(9):6167-6177. doi: 10.1007/s00330-022-08708-4. Epub 2022 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验