Zhao Qing, Martirez John Mark P, Carter Emily A
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States.
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095-1592, United States.
J Am Chem Soc. 2021 Apr 28;143(16):6152-6164. doi: 10.1021/jacs.1c00880. Epub 2021 Apr 14.
Copper (Cu) electrodes, as the most efficacious of CO reduction reaction (CORR) electrocatalysts, serve as prototypes for determining and validating reaction mechanisms associated with electrochemical CO reduction to hydrocarbons. As electrochemical mechanism determination by experiments is still out of reach, such mechanistic analysis typically is conducted using density functional theory (DFT). The semilocal exchange-correlation (XC) approximations most often used to model such catalysis unfortunately engender a basic error: predicting the wrong adsorption site for CO (a key CORR intermediate) on the most ubiquitous facet of Cu, namely, Cu(111). This longstanding inconsistency casts lingering doubt on previous DFT predictions of the attendant CORR kinetics. Here, we apply embedded correlated wavefunction (ECW) theory, which corrects XC functional error, to study the CORR on Cu(111) via both surface hydride (*H) transfer and proton-coupled electron transfer (PCET). We predict that adsorbed CO (*CO) reduces almost equally to two intermediates, namely, hydroxymethylidyne (*COH) and formyl (*CHO) at -0.9 V vs the RHE. In contrast, semilocal DFT approximations predict a strong preference for *COH. With increasing applied potential, the dominance of *COH (formed via potential-independent surface *H transfer) diminishes, switching to the competitive formation of both *CHO and *COH (both formed via potential-dependent PCET). Our results also demonstrate the importance of including explicitly modeled solvent molecules in predicting electron-transfer barriers and reveal the pitfalls of overreliance on simple surface *H transfer models of reduction reactions.
铜(Cu)电极作为一氧化碳还原反应(CORR)最有效的电催化剂,是确定和验证与电化学一氧化碳还原为碳氢化合物相关反应机制的原型。由于通过实验确定电化学机制仍然无法实现,这种机理分析通常使用密度泛函理论(DFT)进行。不幸的是,最常用于模拟这种催化作用的半局部交换关联(XC)近似会产生一个基本误差:预测一氧化碳(一种关键的CORR中间体)在Cu最常见的晶面即Cu(111)上的吸附位点错误。这种长期存在的不一致性使人们对先前DFT对伴随的CORR动力学的预测一直心存疑虑。在这里,我们应用嵌入相关波函数(ECW)理论(该理论可校正XC泛函误差),通过表面氢化物(H)转移和质子耦合电子转移(PCET)来研究Cu(111)上的CORR。我们预测,相对于可逆氢电极(RHE),在-0.9 V时,吸附的一氧化碳(CO)几乎等量地还原为两种中间体,即羟亚甲基(COH)和甲酰基(CHO)。相比之下,半局部DFT近似预测强烈倾向于生成COH。随着外加电势的增加,COH(通过与电势无关的表面H转移形成)的主导地位减弱,转而竞争形成CHO和COH(两者均通过与电势有关的PCET形成)。我们的结果还证明了在预测电子转移势垒时明确建模溶剂分子的重要性,并揭示了过度依赖简单的表面H转移还原反应模型的缺陷。