Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre (NRC), El Buhouth St, Dokki, Cairo, 12622, Egypt.
J Nanobiotechnology. 2024 Jun 20;22(1):352. doi: 10.1186/s12951-024-02577-3.
In this study, highly selenite-resistant strains belonging to Brevundimonas diminuta (OK287021, OK287022) genus were isolated from previously operated single chamber microbial fuel cell (SCMFC). The central composite design showed that the B. diminuta consortium could reduce selenite. Under optimum conditions, 15.38 Log CFU mL microbial growth, 99.08% Se(IV) reduction, and 89.94% chemical oxygen demand (COD) removal were observed. Moreover, the UV-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the synthesis of elemental selenium nanoparticles (SeNPs). In addition, transmission electron microscopy (TEM) and scanning electron microscope (SEM) revealed the formation of SeNPs nano-spheres. Besides, the bioelectrochemical performance of B. diminuta in the SCMFC illustrated that the maximum power density was higher in the case of selenite SCMFCs than those of the sterile control SCMFCs. Additionally, the bioelectrochemical impedance spectroscopy and cyclic voltammetry characterization illustrated the production of definite extracellular redox mediators that might be involved in the electron transfer progression during the reduction of selenite. In conclusion, B. diminuta whose electrochemical activity has never previously been reported could be a suitable and robust biocatalyst for selenite bioreduction along with wastewater treatment, bioelectricity generation, and economical synthesis of SeNPs in MFCs.
在这项研究中,从先前运行的单室微生物燃料电池 (SCMFC) 中分离出属于短波单胞菌属 (Brevundimonas diminuta) (OK287021、OK287022) 的高度亚硒酸盐抗性菌株。中心复合设计表明,短波单胞菌属生物群落可以还原亚硒酸盐。在最佳条件下,观察到 15.38 Log CFU mL 的微生物生长、99.08% 的 Se(IV)还原和 89.94% 的化学需氧量 (COD) 去除。此外,紫外可见光谱 (UV) 和傅里叶变换红外光谱 (FTIR) 分析证实了元素硒纳米粒子 (SeNPs) 的合成。此外,透射电子显微镜 (TEM) 和扫描电子显微镜 (SEM) 显示了 SeNPs 纳米球的形成。此外,B. diminuta 在 SCMFC 中的生物电化学性能表明,亚硒酸盐 SCMFC 的最大功率密度高于无菌对照 SCMFC。此外,生物电化学阻抗谱和循环伏安法特性表明,在还原亚硒酸盐过程中,可能涉及到参与电子传递过程的特定细胞外氧化还原介质的产生。总之,B. diminuta 的电化学活性以前从未被报道过,它可能是一种适合且强大的生物催化剂,可用于亚硒酸盐的生物还原以及废水处理、生物电能生成和 MFC 中 SeNPs 的经济合成。