文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于使用多孔明胶微载体进行三维培养的可注射软骨微组织用于软骨缺损治疗。

Injectable cartilage microtissues based on 3D culture using porous gelatin microcarriers for cartilage defect treatment.

作者信息

Zhu Jing, Luo Qiuchen, Cao Tiefeng, Yang Guang, Xiao Lin

机构信息

School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.

Department of Gynaecology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510070, China.

出版信息

Regen Biomater. 2024 Jun 4;11:rbae064. doi: 10.1093/rb/rbae064. eCollection 2024.


DOI:10.1093/rb/rbae064
PMID:38903559
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11187498/
Abstract

Cartilage tissues possess an extremely limited capacity for self-repair, and current clinical surgical approaches for treating articular cartilage defects can only provide short-term relief. Despite significant advances in the field of cartilage tissue engineering, avoiding secondary damage caused by invasive surgical procedures remains a challenge. In this study, injectable cartilage microtissues were developed through 3D culture of rat bone marrow mesenchymal stem cells (BMSCs) within porous gelatin microcarriers (GMs) and induced differentiation. These microtissues were then injected for the purpose of treating cartilage defects , via a minimally invasive approach. GMs were found to be noncytotoxic and favorable for cell attachment, proliferation and migration evaluated with BMSCs. Moreover, cartilage microtissues with a considerable number of cells and abundant extracellular matrix components were obtained from BMSC-laden GMs after induction differentiation culture for 28 days. Notably, ATDC5 cells were complementally tested to verify that the GMs were conducive to cell attachment, proliferation, migration and chondrogenic differentiation. The microtissues obtained from BMSC-laden GMs were then injected into articular cartilage defect areas in rats and achieved superior performance in alleviating inflammation and repairing cartilage. These findings suggest that the use of injectable cartilage microtissues in this study may hold promise for enhancing the long-term outcomes of cartilage defect treatments while minimizing the risk of secondary damage associated with traditional surgical techniques.

摘要

软骨组织的自我修复能力极其有限,目前治疗关节软骨缺损的临床手术方法只能提供短期缓解。尽管软骨组织工程领域取得了重大进展,但避免侵入性手术造成的二次损伤仍然是一项挑战。在本研究中,通过大鼠骨髓间充质干细胞(BMSCs)在多孔明胶微载体(GMs)内的三维培养和诱导分化,开发了可注射软骨微组织。然后通过微创方法注射这些微组织以治疗软骨缺损。用BMSCs评估发现GMs无细胞毒性,有利于细胞附着、增殖和迁移。此外,诱导分化培养28天后,从负载BMSC的GMs中获得了含有大量细胞和丰富细胞外基质成分的软骨微组织。值得注意的是,对ATDC5细胞进行了补充测试,以验证GMs有利于细胞附着、增殖、迁移和软骨形成分化。然后将从负载BMSC的GMs中获得的微组织注射到大鼠的关节软骨缺损区域,在减轻炎症和修复软骨方面表现出优异的性能。这些发现表明,本研究中使用可注射软骨微组织可能有望提高软骨缺损治疗的长期效果,同时将与传统手术技术相关的二次损伤风险降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/b86b49f3286d/rbae064f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/642404d8e17b/rbae064f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/4e0a3bd062e9/rbae064f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/5c4f6af9f2b8/rbae064f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/7e9dd13ee8e3/rbae064f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/eecbcc1d5bc8/rbae064f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/7ba3d96d458d/rbae064f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/512c3ef051d4/rbae064f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/5bc5e1d1fcd4/rbae064f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/b86b49f3286d/rbae064f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/642404d8e17b/rbae064f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/4e0a3bd062e9/rbae064f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/5c4f6af9f2b8/rbae064f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/7e9dd13ee8e3/rbae064f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/eecbcc1d5bc8/rbae064f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/7ba3d96d458d/rbae064f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/512c3ef051d4/rbae064f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/5bc5e1d1fcd4/rbae064f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11187498/b86b49f3286d/rbae064f8.jpg

相似文献

[1]
Injectable cartilage microtissues based on 3D culture using porous gelatin microcarriers for cartilage defect treatment.

Regen Biomater. 2024-6-4

[2]
Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration.

Biomaterials. 2018-4-16

[3]
Biofabrication of Tissue-Engineered Cartilage Constructs Through Faraday Wave Bioassembly of Cell-Laden Gelatin Microcarriers.

Adv Healthc Mater. 2024-7

[4]
Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration.

Acta Biomater. 2018-7-18

[5]
Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles.

Acta Biomater. 2016-3

[6]
Articular Cartilage Repair with Mesenchymal Stem Cells After Chondrogenic Priming: A Pilot Study.

Tissue Eng Part A. 2017-11-30

[7]
Construction of Microunits by Adipose-Derived Mesenchymal Stem Cells Laden with Porous Microcryogels for Repairing an Acute Achilles Tendon Rupture in a Rat Model.

Int J Nanomedicine. 2020-9-29

[8]
Engineering High-Quality Cartilage Microtissues Using Hydrocortisone Functionalized Microwells.

Tissue Eng Part C Methods. 2023-4

[9]
Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3.

Acta Biomater. 2018-6-22

[10]
Method for manufacture and cryopreservation of cartilage microtissues.

J Tissue Eng. 2023-7-26

引用本文的文献

[1]
Development of a mechanical adaptable, moisture retention capable, injectable and adhesive organohydrogel for nucleus pulposus repairing.

Regen Biomater. 2025-5-19

本文引用的文献

[1]
Enhancing cartilage regeneration and repair through bioactive and biomechanical modification of 3D acellular dermal matrix.

Regen Biomater. 2024-2-5

[2]
Bioprinting of Stem Cell Spheroids Followed by Post-Printing Chondrogenic Differentiation for Cartilage Tissue Engineering.

Adv Healthc Mater. 2023-7

[3]
Osteochondral regenerative engineering: challenges, state-of-the-art and translational perspectives.

Regen Biomater. 2022-12-26

[4]
PD0325901, an ERK inhibitor, attenuates RANKL-induced osteoclast formation and mitigates cartilage inflammation by inhibiting the NF-κB and MAPK pathways.

Bioorg Chem. 2023-3

[5]
New refinements aim to optimize articular cartilage tissue engineering.

Nat Rev Rheumatol. 2023-2

[6]
Locally delivered modified citrus pectin - a galectin-3 inhibitor shows expected anti-inflammatory and unexpected regeneration-promoting effects on repair of articular cartilage defect.

Biomaterials. 2022-12

[7]
Enhancing cartilage repair with optimized supramolecular hydrogel-based scaffold and pulsed electromagnetic field.

Bioact Mater. 2022-10-12

[8]
Engineering the biomechanical microenvironment of chondrocytes towards articular cartilage tissue engineering.

Life Sci. 2022-11-15

[9]
Microtissue-Based Bioink as a Chondrocyte Microshelter for DLP Bioprinting.

Adv Healthc Mater. 2022-11

[10]
Spatial patterning of phenotypically distinct microtissues to engineer osteochondral grafts for biological joint resurfacing.

Biomaterials. 2022-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索