Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903.
Department of Biochemistry, Brigham Young University, Provo, UT 84602.
Proc Natl Acad Sci U S A. 2024 Jan 30;121(5):e2303513121. doi: 10.1073/pnas.2303513121. Epub 2024 Jan 24.
Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury. These cells exhibit highly plastic responses in phenotype during fibrosis in response to environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs differentially regulate measures of cardiac fibroblast phenotype, which may help identify treatments for cardiac fibrosis. We conducted a high-content microscopy screen of human cardiac fibroblasts treated with 13 clinically relevant drugs in the context of TGFβ and/or IL-1β, measuring phenotype across 137 single-cell features. We used the phenotypic data from our high-content imaging to train a logic-based mechanistic machine learning model (LogiMML) for fibroblast signaling. The model predicted how pirfenidone and Src inhibitor WH-4-023 reduce actin filament assembly and actin-myosin stress fiber formation, respectively. Validating the LogiMML model prediction that PI3K partially mediates the effects of Src inhibition, we found that PI3K inhibition reduces actin-myosin stress fiber formation and procollagen I production in human cardiac fibroblasts. In this study, we establish a modeling approach combining the strengths of logic-based network models and regularized regression models. We apply this approach to predict mechanisms that mediate the differential effects of drugs on fibroblasts, revealing Src inhibition acting via PI3K as a potential therapy for cardiac fibrosis.
成纤维细胞是心脏损伤后细胞外基质沉积的重要调节因子。这些细胞在纤维化过程中对环境刺激表现出高度可塑性的表型反应。在这里,我们测试候选抗纤维化药物是否以及如何差异调节心脏成纤维细胞表型的测量,这可能有助于确定心脏纤维化的治疗方法。我们对人类心脏成纤维细胞进行了高内涵显微镜筛选,这些细胞在 TGFβ和/或 IL-1β的背景下接受了 13 种临床相关药物的治疗,测量了 137 个单细胞特征的表型。我们使用高内涵成像的表型数据来训练用于成纤维细胞信号的基于逻辑的机械机器学习模型(LogiMML)。该模型预测了吡非尼酮和Src 抑制剂 WH-4-023 如何分别减少肌动蛋白丝组装和肌动球蛋白应激纤维形成。验证了 LogiMML 模型预测 Src 抑制部分介导 PI3K 的作用,我们发现 PI3K 抑制减少了人类心脏成纤维细胞中的肌动球蛋白应激纤维形成和原胶原蛋白 I 的产生。在这项研究中,我们建立了一种结合基于逻辑的网络模型和正则化回归模型优势的建模方法。我们应用这种方法来预测药物对成纤维细胞的差异作用的机制,揭示 Src 抑制通过 PI3K 起作用是心脏纤维化的一种潜在治疗方法。