Zhou Zhicheng, Zhu Juntong, Li Lutao, Wang Chen, Zhang Changwen, Du Xinyu, Wang Xiangyi, Zhao Guoxiang, Wang Ruonan, Li Jiating, Lu Zheng, Zong Yi, Sun Yinghui, Rümmeli Mark H, Zou Guifu
College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China.
ACS Nano. 2024 Jul 2;18(26):17282-17292. doi: 10.1021/acsnano.4c05293. Epub 2024 Jun 21.
Epitaxial growth stands as a key method for integrating semiconductors into heterostructures, offering a potent avenue to explore the electronic and optoelectronic characteristics of cutting-edge materials, such as transition metal dichalcogenide (TMD) and perovskites. Nevertheless, the layer-by-layer growth atop TMD materials confronts a substantial energy barrier, impeding the adsorption and nucleation of perovskite atoms on the 2D surface. Here, we epitaxially grown an inorganic lead-free perovskite on TMD and formed van der Waals (vdW) heterojunctions. Our work employs a monomolecular membrane-assisted growth strategy that reduces the contact angle and simultaneously diminishing the energy barrier for CsSbBr surface nucleation. By controlling the nucleation temperature, we achieved a reduction in the thickness of the CsSbBr epitaxial layer from 30 to approximately 4 nm. In the realm of inorganic lead-free perovskite and TMD heterojunctions, we observed long-lived interlayer exciton of 9.9 ns, approximately 36 times longer than the intralayer exciton lifetime, which benefited from the excellent interlayer coupling brought by direct epitaxial growth. Our research introduces a monomolecular membrane-assisted growth strategy that expands the diversity of materials attainable through vdW epitaxial growth, potentially contributing to future applications in optoelectronics involving heterojunctions.
外延生长是将半导体集成到异质结构中的关键方法,为探索前沿材料(如过渡金属二卤化物(TMD)和钙钛矿)的电子和光电特性提供了一条有效途径。然而,在TMD材料上逐层生长面临着巨大的能垒,阻碍了钙钛矿原子在二维表面的吸附和成核。在此,我们在TMD上外延生长了一种无机无铅钙钛矿,并形成了范德华(vdW)异质结。我们的工作采用了单分子膜辅助生长策略,该策略减小了接触角,同时降低了CsSbBr表面成核的能垒。通过控制成核温度,我们将CsSbBr外延层的厚度从30 nm减小到了约4 nm。在无机无铅钙钛矿和TMD异质结领域,我们观察到了9.9 ns的长寿命层间激子,比层内激子寿命长约36倍,这得益于直接外延生长带来的优异层间耦合。我们的研究引入了一种单分子膜辅助生长策略,扩展了通过vdW外延生长可获得的材料的多样性,可能有助于涉及异质结的光电子学未来应用。