Suppr超能文献

评价 QIAstat-Dx 呼吸道 SARS-CoV-2 检测 panel 在鼻咽和下呼吸道标本中病原体检测的应用。

Evaluation of the QIAstat-Dx Respiratory SARS-CoV-2 Panel for detection of pathogens in nasopharyngeal and lower respiratory tract specimens.

机构信息

Kelowna General Hospital, Kelowna, BC, Canada; University of British Columbia, Vancouver, BC, Canada; University of British Columbia Okanagan, Kelowna, BC, Canada.

University of British Columbia Okanagan, Kelowna, BC, Canada.

出版信息

Diagn Microbiol Infect Dis. 2024 Sep;110(1):116368. doi: 10.1016/j.diagmicrobio.2024.116368. Epub 2024 May 24.

Abstract

This study evaluates the performance of the QIAstat-Dx Respiratory SARS-CoV-2 Panel (RS2P) for the detection of respiratory pathogens. RS2P testing was performed on 440 specimens, including 82 negatives and 358 specimens positive for 1 or more targets (520 targets initially detected). Initial testing was performed on multiple platforms during routine laboratory workflow. Specimens with discordant results on RS2P were re-tested on a different platform to obtain a consensus result based on agreement of 2/3 assays. Percent positive, negative and overall agreement (PPA, PNA, POA), as well as concordance by number of targets and CT value range were calculated. RS2P produced valid results in 439 specimens, with a POA of 91.5 % based on consensus results, with 16/31 (51.6 %) discordant specimens with >1 positive target. When individual targets were examined, PPA, PNA and POA were 93.7 %, 99.9 % and 99.6 % compared to consensus results. Overall, RS2P performed well in detection of respiratory pathogens.

摘要

本研究评估了 QIAstat-Dx Respiratory SARS-CoV-2 Panel(RS2P)用于检测呼吸道病原体的性能。RS2P 测试在 440 个标本上进行,包括 82 个阴性标本和 358 个 1 个或多个靶标阳性的标本(最初检测到 520 个靶标)。初始测试是在常规实验室工作流程中的多个平台上进行的。RS2P 检测结果不一致的标本在不同平台上重新检测,以获得基于 2/3 个检测方法一致的共识结果。计算阳性率、阴性率和总符合率(PPA、PNA、POA),以及根据靶标数量和 CT 值范围的一致性。RS2P 在 439 个标本中产生了有效结果,根据共识结果,POA 为 91.5%,16/31(51.6%)个不一致的标本有>1 个阳性靶标。当单独检查各个靶标时,PPA、PNA 和 POA 与共识结果相比分别为 93.7%、99.9%和 99.6%。总体而言,RS2P 在检测呼吸道病原体方面表现良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验