Suppr超能文献

使用漂浮的真实环境在头固定小鼠中进行海马依赖性导航。

Hippocampal-dependent navigation in head-fixed mice using a floating real-world environment.

机构信息

Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.

Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.

出版信息

Sci Rep. 2024 Jun 21;14(1):14315. doi: 10.1038/s41598-024-64807-w.

Abstract

Head-fixation of mice enables high-resolution monitoring of neuronal activity coupled with precise control of environmental stimuli. Virtual reality can be used to emulate the visual experience of movement during head fixation, but a low inertia floating real-world environment (mobile homecage, MHC) has the potential to engage more sensory modalities and provide a richer experimental environment for complex behavioral tasks. However, it is not known whether mice react to this adapted environment in a similar manner to real environments, or whether the MHC can be used to implement validated, maze-based behavioral tasks. Here, we show that hippocampal place cell representations are intact in the MHC and that the system allows relatively long (20 min) whole-cell patch clamp recordings from dorsal CA1 pyramidal neurons, revealing sub-threshold membrane potential dynamics. Furthermore, mice learn the location of a liquid reward within an adapted T-maze guided by 2-dimensional spatial navigation cues and relearn the location when spatial contingencies are reversed. Bilateral infusions of scopolamine show that this learning is hippocampus-dependent and requires intact cholinergic signalling. Therefore, we characterize the MHC system as an experimental tool to study sub-threshold membrane potential dynamics that underpin complex navigation behaviors.

摘要

通过将鼠标固定在头部,可实现对神经元活动的高分辨率监测,并能精确控制环境刺激。虚拟现实可用于模拟头部固定时的运动视觉体验,但低惯性浮动现实环境(移动家庭笼,MHC)具有激发更多感觉模式的潜力,并为复杂行为任务提供更丰富的实验环境。然而,尚不清楚老鼠对此种适应环境的反应是否与真实环境相似,或者 MHC 是否可用于实施经过验证的、基于迷宫的行为任务。在这里,我们发现海马体位置细胞的表现形式在 MHC 中仍然完整,并且该系统允许从背侧 CA1 锥体神经元进行相对较长(20 分钟)的全细胞膜片钳记录,揭示了亚阈值膜电位动态。此外,老鼠可以通过二维空间导航线索引导的适应性 T 型迷宫学习液体奖励的位置,当空间关联发生反转时,它们可以重新学习奖励位置。双侧东莨菪碱输注表明,这种学习是海马体依赖性的,需要完整的胆碱能信号。因此,我们将 MHC 系统描述为一种研究复杂导航行为的亚阈值膜电位动力学的实验工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86ac/11192748/c1a0123dbe9d/41598_2024_64807_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验