de Cripan Sara M, Cereto-Massagué Adrià, Herrero Pol, Barcaru Andrei, Canela Núria, Domingo-Almenara Xavier
Computational Metabolomics for Systems Biology Lab, Omics Sciences Unit, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Catalonia, Spain.
Centre for Omics Sciences (COS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Catalonia, Spain.
Biomedicines. 2022 Apr 11;10(4):879. doi: 10.3390/biomedicines10040879.
In gas chromatography-mass spectrometry-based untargeted metabolomics, metabolites are identified by comparing mass spectra and chromatographic retention time with reference databases or standard materials. In that sense, machine learning has been used to predict the retention time of metabolites lacking reference data. However, the retention time prediction of trimethylsilyl derivatives of metabolites, typically analyzed in untargeted metabolomics using gas chromatography, has been poorly explored. Here, we provide a rationalized framework for machine learning-based retention time prediction of trimethylsilyl derivatives of metabolites in gas chromatography. We compared different machine learning paradigms, in addition to exploring the influence of the computational molecular structure representation to train the prediction models: fingerprint class and fingerprint calculation software. Our study challenged predicted retention time when using chemical ionization and electron impact ionization sources in simulated and real cases, demonstrating a good correct identity ranking capability by machine learning, despite observing a limited false identity filtering power in cases where a spectrum or a monoisotopic mass match to multiple candidates. Specifically, machine learning prediction yielded median absolute and relative retention index (relative retention time) errors of 37.1 retention index units and 2%, respectively. In addition, fingerprint class and fingerprint calculation software, as well as the molecular structural similarity between the training and test or real case sets, showed to be critical modulators of the prediction performance. Finally, we leveraged the structural similarity between the training and test or real case set to determine the probability that the prediction error is below a specific threshold. Overall, our study demonstrates that predicted retention time can provide insights into the true structure of unknown metabolites by ranking from the most to the least plausible molecular identity, and sets the guidelines to assess the confidence in metabolite identification using predicted retention time data.
在基于气相色谱 - 质谱联用的非靶向代谢组学中,通过将质谱图和色谱保留时间与参考数据库或标准物质进行比较来鉴定代谢物。从这个意义上说,机器学习已被用于预测缺乏参考数据的代谢物的保留时间。然而,在非靶向代谢组学中通常使用气相色谱分析的代谢物三甲基硅烷基衍生物的保留时间预测尚未得到充分探索。在此,我们提供了一个基于机器学习的气相色谱中代谢物三甲基硅烷基衍生物保留时间预测的合理框架。除了探索计算分子结构表示对训练预测模型的影响(指纹类别和指纹计算软件)之外,我们还比较了不同的机器学习范式。我们的研究在模拟和实际案例中使用化学电离和电子轰击电离源时对预测的保留时间提出了挑战,尽管在光谱或单同位素质量与多个候选物匹配的情况下观察到有限的错误识别过滤能力,但机器学习仍显示出良好的正确识别排名能力。具体而言,机器学习预测产生的中位绝对和相对保留指数(相对保留时间)误差分别为37.1个保留指数单位和2%。此外,指纹类别和指纹计算软件,以及训练集与测试集或实际案例集之间的分子结构相似性,被证明是预测性能的关键调节因素。最后,我们利用训练集与测试集或实际案例集之间的结构相似性来确定预测误差低于特定阈值的概率。总体而言,我们的研究表明,预测的保留时间可以通过从最合理到最不合理的分子身份进行排名,从而深入了解未知代谢物的真实结构,并为使用预测保留时间数据评估代谢物鉴定的置信度设定指导原则。