Suppr超能文献

通过异质均值场建模研究最佳 n 选择中的速度-准确性权衡。

Speed-accuracy trade-offs in best-of-n collective decision making through heterogeneous mean-field modeling.

机构信息

Institute for Interdisciplinary Studies on Artificial Intelligence (IRIDIA), Université Libre de Bruxelles, B1050 Brussels, Belgium; Centre for the Advanced Study of Collective Behaviour, Universität Konstanz, 78464 Konstanz, Germany; and Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany.

Faculty of Computer Science and Namur Institute for Complex Systems, naXys Université de Namur, Rue Grandgagnage 21, B5000 Namur, Belgium.

出版信息

Phys Rev E. 2024 May;109(5-1):054307. doi: 10.1103/PhysRevE.109.054307.

Abstract

To succeed in their objectives, groups of individuals must be able to make quick and accurate collective decisions on the best option among a set of alternatives with different qualities. Group-living animals aim to do that all the time. Plants and fungi are thought to do so too. Swarms of autonomous robots can also be programed to make best-of-n decisions for solving tasks collaboratively. Ultimately, humans critically need it and so many times they should be better at it! Thanks to their mathematical tractability, simple models like the voter model and the local majority rule model have proven useful to describe the dynamics of such collective decision-making processes. To reach a consensus, individuals change their opinion by interacting with neighbors in their social network. At least among animals and robots, options with a better quality are exchanged more often and therefore spread faster than lower-quality options, leading to the collective selection of the best option. With our work, we study the impact of individuals making errors in pooling others' opinions caused, for example, by the need to reduce the cognitive load. Our analysis is grounded on the introduction of a model that generalizes the two existing models (local majority rule and voter model), showing a speed-accuracy trade-off regulated by the cognitive effort of individuals. We also investigate the impact of the interaction network topology on the collective dynamics. To do so, we extend our model and, by using the heterogeneous mean-field approach, we show the presence of another speed-accuracy trade-off regulated by network connectivity. An interesting result is that reduced network connectivity corresponds to an increase in collective decision accuracy.

摘要

为了实现目标,个体必须能够在一组具有不同质量的备选方案中快速准确地做出最佳选择。群居动物一直都在努力做到这一点。植物和真菌也被认为能够做到这一点。成群的自主机器人也可以被编程为在协作解决任务时做出最佳选择。最终,人类迫切需要这种能力,而且他们应该做得更好!由于其数学上的可处理性,简单的模型,如投票模型和局部多数规则模型,已经被证明对于描述这种集体决策过程的动态是有用的。为了达成共识,个体通过与社交网络中的邻居进行互动来改变自己的意见。至少在动物和机器人中,质量更好的选项会被更频繁地交换,因此会比质量较低的选项传播得更快,从而导致最佳选项的集体选择。在我们的工作中,我们研究了个体在汇总他人意见时出错的影响,例如,由于需要降低认知负荷而导致的错误。我们的分析基于引入一个模型,该模型概括了现有的两个模型(局部多数规则和投票模型),展示了由个体认知努力调节的速度-准确性权衡。我们还研究了交互网络拓扑结构对集体动力学的影响。为此,我们扩展了我们的模型,并通过使用异质平均场方法,展示了由网络连接性调节的另一个速度-准确性权衡。一个有趣的结果是,网络连接性的降低对应于集体决策准确性的提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验