Suppr超能文献

设计高亲和力肽 MHC Ⅰ类使用 MAM:一种计算方法。

Designing High Binding Affinity Peptides for MHC Class I Using MAM: An In Silico Approach.

机构信息

Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong.

出版信息

Methods Mol Biol. 2024;2809:263-274. doi: 10.1007/978-1-0716-3874-3_17.

Abstract

The availability of extensive MHC-peptide binding data has boosted machine learning-based approaches for predicting binding affinity and identifying binding motifs. These computational tools leverage the wealth of binding data to extract essential features and generate a multitude of potential peptides, thereby significantly reducing the cost and time required for experimental procedures. MAM is one such tool for predicting the MHC-I-peptide binding affinity, extracting binding motifs, and generating new peptides with high affinity. This manuscript provides step-by-step guidance on installing, configuring, and executing MAM while also discussing the best practices when using this tool.

摘要

大量 MHC-肽结合数据的可用性推动了基于机器学习的方法,用于预测结合亲和力和识别结合基序。这些计算工具利用丰富的结合数据来提取必要的特征,并生成大量潜在的肽,从而大大降低了实验程序所需的成本和时间。MAM 是一种用于预测 MHC-I-肽结合亲和力、提取结合基序和生成具有高亲和力的新肽的工具。本文档提供了安装、配置和执行 MAM 的逐步指南,同时还讨论了使用此工具的最佳实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验