Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
Redox Biol. 2024 Sep;75:103242. doi: 10.1016/j.redox.2024.103242. Epub 2024 Jun 17.
Mice models of Alzheimer's disease (APP/PS1) typically experience cognitive decline with age. G6PD overexpressing mice (G6PD-Tg) exhibit better protection from age-associated functional decline including improvements in metabolic and muscle functions as well as reduced frailty compared to their wild-type counterparts. Importantly G6PD-Tg mice show diminished accumulation of DNA oxidation in the brain at different ages in both males and females. To further explore the potential benefits of modulating the G6PD activity in neurodegenerative diseases, triple transgenic mice (3xTg G6PD) were generated, overexpressing APP, PSEN1, and G6PD genes. The cognitive decline characteristic of APP/PS1 mice was prevented in 3xTg G6PD mice, despite similar amyloid-β (Aβ) levels in the hippocampus. This challenges the dominant hypothesis in Alzheimer's disease (AD) etiology and the majority of therapeutic efforts in the field, based on the notion that Aβ is pivotal in cognitive preservation. Notably, the antioxidant properties of G6PD led to a decrease in oxidative stress parameters, such as improved GSH/GSSG and GSH/CysSSG ratios, without major changes in oxidative damage markers. Additionally, metabolic changes in 3xTg G6PD mice increased brain energy status, countering the hypometabolism observed in Alzheimer's models. Remarkably, a higher respiratory exchange ratio suggested increased carbohydrate utilization. The relative failures of Aβ-targeted clinical trials have raised significant skepticism on the amyloid cascade hypothesis and whether the development of Alzheimer's drugs has followed the correct path. Our findings highlight the significance of targeting glucose-metabolizing enzymes rather than solely focusing on Aβ in Alzheimer's research, advocating for a deeper exploration of glucose metabolism's role in cognitive preservation.
阿尔茨海默病(APP/PS1)的小鼠模型通常随着年龄的增长而出现认知能力下降。与野生型小鼠相比,葡糖-6-磷酸脱氢酶(G6PD)过表达(G6PD-Tg)的小鼠表现出更好的保护作用,可防止与年龄相关的功能下降,包括代谢和肌肉功能的改善以及虚弱程度的降低。重要的是,G6PD-Tg 小鼠在雄性和雌性不同年龄时大脑中的 DNA 氧化积累减少。为了进一步探索调节神经退行性疾病中 G6PD 活性的潜在益处,生成了三重转基因(3xTg G6PD)小鼠,其过表达 APP、PSEN1 和 G6PD 基因。尽管海马体中的淀粉样蛋白-β(Aβ)水平相似,但 3xTg G6PD 小鼠的认知能力下降特征得到了预防。这挑战了阿尔茨海默病(AD)发病机制中的主要假说以及该领域的大多数治疗方法,这些假说基于 Aβ 对认知保护至关重要的观点。值得注意的是,G6PD 的抗氧化特性导致氧化应激参数下降,例如提高了 GSH/GSSG 和 GSH/CysSSG 比值,而氧化损伤标志物没有重大变化。此外,3xTg G6PD 小鼠的代谢变化增加了大脑的能量状态,抵消了在阿尔茨海默病模型中观察到的低代谢。值得注意的是,更高的呼吸交换率表明碳水化合物利用率增加。Aβ 靶向临床试验的相对失败对淀粉样蛋白级联假说以及阿尔茨海默病药物的开发是否遵循正确的途径提出了重大质疑。我们的发现强调了靶向葡萄糖代谢酶而不仅仅是 Aβ 在阿尔茨海默病研究中的重要性,主张更深入地探索葡萄糖代谢在认知保护中的作用。