Department of Computer Science, Stanford University, 353 Jane Stanford Way, Stanford, CA 94305, USA.
Greenstone Biosciences, 3160 Porter Drive, Suite 140, Palo Alto, CA 94304, USA.
Bioinformatics. 2024 Jul 1;40(7). doi: 10.1093/bioinformatics/btae416.
The emergence of large chemical repositories and combinatorial chemical spaces, coupled with high-throughput docking and generative AI, have greatly expanded the chemical diversity of small molecules for drug discovery. Selecting compounds for experimental validation requires filtering these molecules based on favourable druglike properties, such as Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET).
We developed ADMET-AI, a machine learning platform that provides fast and accurate ADMET predictions both as a website and as a Python package. ADMET-AI has the highest average rank on the TDC ADMET Leaderboard, and it is currently the fastest web-based ADMET predictor, with a 45% reduction in time compared to the next fastest public ADMET web server. ADMET-AI can also be run locally with predictions for one million molecules taking just 3.1 h.
The ADMET-AI platform is freely available both as a web server at admet.ai.greenstonebio.com and as an open-source Python package for local batch prediction at github.com/swansonk14/admet_ai (also archived on Zenodo at doi.org/10.5281/zenodo.10372930). All data and models are archived on Zenodo at doi.org/10.5281/zenodo.10372418.
大型化学知识库和组合化学空间的出现,加上高通量对接和生成式人工智能,极大地扩展了小分子药物发现的化学多样性。为了实验验证而选择化合物,需要根据有利的类药性特性(如吸收、分布、代谢、排泄和毒性(ADMET))对这些分子进行过滤。
我们开发了 ADMET-AI,这是一个机器学习平台,既可以作为网站,也可以作为 Python 包,提供快速而准确的 ADMET 预测。ADMET-AI 在 TDC ADMET 排行榜上的平均排名最高,它是目前最快的基于网络的 ADMET 预测器,与下一个最快的公共 ADMET 网络服务器相比,时间缩短了 45%。ADMET-AI 也可以在本地运行,对一百万种分子进行预测仅需 3.1 小时。
ADMET-AI 平台既可以作为 admet.ai.greenstonebio.com 的网络服务器免费使用,也可以作为本地批量预测的开源 Python 包使用,可在 github.com/swansonk14/admet_ai 上获取(也在 Zenodo 存档,网址为 doi.org/10.5281/zenodo.10372930)。所有数据和模型都在 Zenodo 存档,网址为 doi.org/10.5281/zenodo.10372418。