Suppr超能文献

HelixADMET:一个强大且可扩展终点的 ADMET 系统,包含自我监督的知识迁移。

HelixADMET: a robust and endpoint extensible ADMET system incorporating self-supervised knowledge transfer.

机构信息

Department of Natural Language Processcing, Baidu International Technology (Shenzhen) Co., Ltd, Shenzhen 518000, China.

School of Computer Science and Technology, Harbin Institute of Technology (HIT), Shenzhen 518000, China.

出版信息

Bioinformatics. 2022 Jun 27;38(13):3444-3453. doi: 10.1093/bioinformatics/btac342.

Abstract

MOTIVATION

Accurate ADMET (an abbreviation for 'absorption, distribution, metabolism, excretion and toxicity') predictions can efficiently screen out undesirable drug candidates in the early stage of drug discovery. In recent years, multiple comprehensive ADMET systems that adopt advanced machine learning models have been developed, providing services to estimate multiple endpoints. However, those ADMET systems usually suffer from weak extrapolation ability. First, due to the lack of labelled data for each endpoint, typical machine learning models perform frail for the molecules with unobserved scaffolds. Second, most systems only provide fixed built-in endpoints and cannot be customized to satisfy various research requirements. To this end, we develop a robust and endpoint extensible ADMET system, HelixADMET (H-ADMET). H-ADMET incorporates the concept of self-supervised learning to produce a robust pre-trained model. The model is then fine-tuned with a multi-task and multi-stage framework to transfer knowledge between ADMET endpoints, auxiliary tasks and self-supervised tasks.

RESULTS

Our results demonstrate that H-ADMET achieves an overall improvement of 4%, compared with existing ADMET systems on comparable endpoints. Additionally, the pre-trained model provided by H-ADMET can be fine-tuned to generate new and customized ADMET endpoints, meeting various demands of drug research and development requirements.

AVAILABILITY AND IMPLEMENTATION

H-ADMET is freely accessible at https://paddlehelix.baidu.com/app/drug/admet/train.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

准确的 ADMET(吸收、分布、代谢、排泄和毒性的缩写)预测可以在药物发现的早期有效地筛选出不理想的药物候选物。近年来,已经开发出多个采用先进机器学习模型的综合 ADMET 系统,为多个终点的估计提供服务。然而,这些 ADMET 系统通常存在外推能力弱的问题。首先,由于每个终点的标记数据不足,典型的机器学习模型对于未观察到支架的分子表现不佳。其次,大多数系统仅提供固定的内置终点,无法定制以满足各种研究需求。为此,我们开发了一个强大的和可扩展终点的 ADMET 系统,HelixADMET(H-ADMET)。H-ADMET 采用了自监督学习的概念来生成一个强大的预训练模型。然后,该模型通过多任务和多阶段框架进行微调,以在 ADMET 终点、辅助任务和自监督任务之间转移知识。

结果

我们的结果表明,与可比终点的现有 ADMET 系统相比,H-ADMET 在整体上提高了 4%。此外,H-ADMET 提供的预训练模型可以进行微调,以生成新的和定制的 ADMET 终点,满足药物研发的各种需求。

可用性和实现

H-ADMET 可在 https://paddlehelix.baidu.com/app/drug/admet/train 免费访问。

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验