Zhu Cheng, Tan Ying, Yang Shuqi, Miao Jiaqing, Zhu Jiayi, Huang Huan, Yao Dezhong, Luo Cheng
IEEE Trans Med Imaging. 2024 Dec;43(12):4307-4318. doi: 10.1109/TMI.2024.3419041. Epub 2024 Dec 2.
Available evidence suggests that dynamic functional connectivity can capture time-varying abnormalities in brain activity in resting-state cerebral functional magnetic resonance imaging (rs-fMRI) data and has a natural advantage in uncovering mechanisms of abnormal brain activity in schizophrenia (SZ) patients. Hence, an advanced dynamic brain network analysis model called the temporal brain category graph convolutional network (Temporal-BCGCN) was employed. Firstly, a unique dynamic brain network analysis module, DSF-BrainNet, was designed to construct dynamic synchronization features. Subsequently, a revolutionary graph convolution method, TemporalConv, was proposed based on the synchronous temporal properties of features. Finally, the first modular test tool for abnormal hemispherical lateralization in deep learning based on rs-fMRI data, named CategoryPool, was proposed. This study was validated on COBRE and UCLA datasets and achieved 83.62% and 89.71% average accuracies, respectively, outperforming the baseline model and other state-of-the-art methods. The ablation results also demonstrate the advantages of TemporalConv over the traditional edge feature graph convolution approach and the improvement of CategoryPool over the classical graph pooling approach. Interestingly, this study showed that the lower-order perceptual system and higher-order network regions in the left hemisphere are more severely dysfunctional than in the right hemisphere in SZ, reaffirmings the importance of the left medial superior frontal gyrus in SZ. Our code was available at: https://github.com/swfen/Temporal-BCGCN.
现有证据表明,动态功能连接可以捕捉静息态脑功能磁共振成像(rs-fMRI)数据中大脑活动随时间变化的异常情况,并且在揭示精神分裂症(SZ)患者大脑活动异常机制方面具有天然优势。因此,采用了一种先进的动态脑网络分析模型,即时间脑类别图卷积网络(Temporal-BCGCN)。首先,设计了一个独特的动态脑网络分析模块DSF-BrainNet来构建动态同步特征。随后,基于特征的同步时间特性提出了一种革命性的图卷积方法TemporalConv。最后,提出了第一个基于rs-fMRI数据的深度学习中异常半球偏侧化的模块化测试工具CategoryPool。本研究在COBRE和UCLA数据集上得到验证,平均准确率分别达到83.62%和89.71%,优于基线模型和其他现有最先进方法。消融结果也证明了TemporalConv相对于传统边缘特征图卷积方法的优势以及CategoryPool相对于经典图池化方法的改进。有趣的是,本研究表明,SZ患者左半球的低阶感知系统和高阶网络区域比右半球功能障碍更严重,再次证实了左内侧额上回在SZ中的重要性。我们的代码可在以下网址获取:https://github.com/swfen/Temporal-BCGCN。