School of Life Science and Technology, ShanghaiTech University, Shanghai 201210 People's Republic of China.
Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
Nano Lett. 2024 Jul 10;24(27):8410-8417. doi: 10.1021/acs.nanolett.4c02104. Epub 2024 Jun 26.
Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.
在特定器官或细胞中发挥功能的纳米器件是合成生物学的最终目标之一。近年来,DNA 折纸术等 DNA 纳米技术的进展使得我们能够构建纳米器件将有效载荷(例如药物)递送到肿瘤部位。然而,由于 DNA 纳米结构的脆弱性和 DNA 纳米结构的靶向能力低,向特定器官的递送仍然很困难。在这里,我们构建了坚韧的 DNA 折纸术,使我们能够在恶劣条件下(低 pH 值)将 DNA 折纸术封装到基于脂质的纳米颗粒(LNPs)中,利用特定器官的方式来输送感兴趣的基因(GOI)。我们发现,DNA 折纸术包裹的 LNPs 可以通过低温电子显微镜(Cryo-EM)揭示的不同 LNP 结构,增加载药 GOI(mRNA 和 siRNA)在小鼠器官中的功能。这些数据应该为未来使用 DNA 折纸术纳米器件进行特定器官的基因表达控制提供基础。