Suppr超能文献

DNA折纸中的折叠竞争与动态转变:平行与反平行交叉

Folding Competition and Dynamic Transformation in DNA Origami: Parallel Versus Antiparallel Crossovers.

作者信息

Lee Jung Yeon, Yang Qi, Chang Xu, Perumal Devanathan, Zhang Fei

机构信息

Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA.

出版信息

Small Methods. 2025 Jun;9(6):e2401343. doi: 10.1002/smtd.202401343. Epub 2025 Feb 3.

Abstract

DNA is a versatile abiomaterial for constructing nanostructures with biomedical and biotechnological applications. Among the methods available, DNA origami is a robust and widely recognized technique. Traditionally, most origami designs adopt antiparallel crossovers in both scaffold and staple strands, with less emphasis on parallel crossovers, which offer advantages like enhanced nuclease resistance and single-strand routing potential. Here, a DNA origami nanostructure is designed, featuring two rotational panels that can be locked into configurations based on either antiparallel or parallel crossovers. By systematically varying the length and arrangement of these key staples, 36 pairs of antiparallel and parallel designs are studied in competitive folding tests, providing insights into the relative preference for each design. The 12 antiparallel and parallel designs are ranked, their folding pathways are examined, and nuclease resistance is assessed. The results reveal that the arrangement of staples near the central scaffold crossover is crucial for shifting between parallel and antiparallel conformations. Additionally, a two-way isothermal transformation between antiparallel and parallel origami driven by toehold-mediated displacement reactions is demonstrated, highlighting the potential of parallel designs as dynamic nanodevices for temperature-sensitive environments. This study offers valuable insights into - dynamics in antiparallel and parallel DNA origami, opening opportunities for designing  nanodevices based on parallel crossovers.

摘要

DNA是一种用途广泛的生物材料,可用于构建具有生物医学和生物技术应用的纳米结构。在现有的方法中,DNA折纸是一种成熟且广为人知的技术。传统上,大多数折纸设计在支架链和短链中都采用反平行交叉,而对平行交叉的关注较少,平行交叉具有增强核酸酶抗性和单链路由潜力等优点。在此,设计了一种DNA折纸纳米结构,其具有两个旋转面板,可根据反平行或平行交叉锁定成不同构型。通过系统地改变这些关键短链的长度和排列,在竞争性折叠测试中研究了36对反平行和平行设计,从而深入了解每种设计的相对偏好。对12种反平行和平行设计进行了排序,研究了它们的折叠途径,并评估了核酸酶抗性。结果表明,中心支架交叉附近短链的排列对于在平行和反平行构象之间转换至关重要。此外,还展示了由链置换反应驱动的反平行和平行折纸之间的双向等温转变,突出了平行设计作为对温度敏感环境的动态纳米器件的潜力。这项研究为反平行和平行DNA折纸中的动力学提供了有价值的见解,为基于平行交叉设计纳米器件开辟了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7687/12182888/ea50be5c5637/SMTD-9-2401343-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验