Suppr超能文献

IngredSAM:通过单一图像提示实现开放世界食品成分分割

IngredSAM: Open-World Food Ingredient Segmentation via a Single Image Prompt.

作者信息

Chen Leyi, Wang Bowen, Zhang Jiaxin

机构信息

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

D3 Center, Osaka University, 2-1, Yamadaoka, Osaka 5650871, Japan.

出版信息

J Imaging. 2024 Nov 26;10(12):305. doi: 10.3390/jimaging10120305.

Abstract

Food semantic segmentation is of great significance in the field of computer vision and artificial intelligence, especially in the application of food image analysis. Due to the complexity and variety of food, it is difficult to effectively handle this task using supervised methods. Thus, we introduce IngredSAM, a novel approach for open-world food ingredient semantic segmentation, extending the capabilities of the Segment Anything Model (SAM). Utilizing visual foundation models (VFMs) and prompt engineering, IngredSAM leverages discriminative and matchable semantic features between a single clean image prompt of specific ingredients and open-world images to guide the generation of accurate segmentation masks in real-world scenarios. This method addresses the challenges of traditional supervised models in dealing with the diverse appearances and class imbalances of food ingredients. Our framework demonstrates significant advancements in the segmentation of food ingredients without any training process, achieving 2.85% and 6.01% better performance than previous state-of-the-art methods on both FoodSeg103 and UECFoodPix datasets. IngredSAM exemplifies a successful application of one-shot, open-world segmentation, paving the way for downstream applications such as enhancements in nutritional analysis and consumer dietary trend monitoring.

摘要

食品语义分割在计算机视觉和人工智能领域具有重要意义,特别是在食品图像分析的应用中。由于食品的复杂性和多样性,使用监督方法难以有效地处理这项任务。因此,我们引入了IngredSAM,这是一种用于开放世界食品成分语义分割的新方法,扩展了分割一切模型(SAM)的能力。IngredSAM利用视觉基础模型(VFM)和提示工程,利用特定成分的单个清晰图像提示与开放世界图像之间的判别性和可匹配语义特征,在现实场景中指导生成准确的分割掩码。该方法解决了传统监督模型在处理食品成分多样外观和类别不平衡方面的挑战。我们的框架在无需任何训练过程的食品成分分割方面取得了显著进展,在FoodSeg103和UECFoodPix数据集上的性能比之前的最先进方法分别提高了2.85%和6.01%。IngredSAM体现了一次性开放世界分割的成功应用,为营养分析增强和消费者饮食趋势监测等下游应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/11677470/f5ebd65b7c5b/jimaging-10-00305-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验