Suppr超能文献

聚焦记忆:编码与检索过程中的瞳孔测量法

Eyes on Memory: Pupillometry in Encoding and Retrieval.

作者信息

Kafkas Alex

机构信息

School of Health Sciences, Division of Psychology, Communication and Human Neuroscience, University of Manchester, Manchester M13 9PL, UK.

出版信息

Vision (Basel). 2024 Jun 14;8(2):37. doi: 10.3390/vision8020037.

Abstract

This review critically examines the contributions of pupillometry to memory research, primarily focusing on its enhancement of our understanding of memory encoding and retrieval mechanisms mainly investigated with the recognition memory paradigm. The evidence supports a close link between pupil response and memory formation, notably influenced by the type of novelty detected. This proposal reconciles inconsistencies in the literature regarding pupil response patterns that may predict successful memory formation, and highlights important implications for encoding mechanisms. The review also discusses the pupil old/new effect and its significance in the context of recollection and in reflecting brain signals related to familiarity or novelty detection. Additionally, the capacity of pupil response to serve as a true memory signal and to distinguish between true and false memories is evaluated. The evidence provides insights into the nature of false memories and offers a novel understanding of the cognitive mechanisms involved in memory distortions. When integrated with rigorous experimental design, pupillometry can significantly refine theoretical models of memory encoding and retrieval. Furthermore, combining pupillometry with neuroimaging and pharmacological interventions is identified as a promising direction for future research.

摘要

本综述批判性地审视了瞳孔测量法对记忆研究的贡献,主要聚焦于其如何增进我们对主要通过识别记忆范式所研究的记忆编码和检索机制的理解。证据支持瞳孔反应与记忆形成之间存在紧密联系,这尤其受到所检测到的新奇性类型的影响。这一观点调和了文献中关于可能预测成功记忆形成的瞳孔反应模式的不一致之处,并突出了对编码机制的重要启示。该综述还讨论了瞳孔新旧效应及其在回忆背景下以及在反映与熟悉度或新奇性检测相关的脑信号方面的意义。此外,评估了瞳孔反应作为真正记忆信号以及区分真实记忆和虚假记忆的能力。这些证据为虚假记忆的本质提供了见解,并对记忆扭曲所涉及的认知机制提供了全新的理解。当与严谨的实验设计相结合时,瞳孔测量法能够显著完善记忆编码和检索的理论模型。此外,将瞳孔测量法与神经成像和药理学干预相结合被视为未来研究的一个有前景的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e9e/11209248/d01bde8d3ef7/vision-08-00037-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验