Suppr超能文献

提高模拟蛋白质配体结合和解离的方法的通量。

Increased throughput in methods for simulating protein ligand binding and unbinding.

机构信息

Department of Paediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, 74800, Pakistan.

Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, 61029, Italy.

出版信息

Curr Opin Struct Biol. 2024 Aug;87:102871. doi: 10.1016/j.sbi.2024.102871. Epub 2024 Jun 25.

Abstract

By incorporating full flexibility and enabling the quantification of crucial parameters such as binding free energies and residence times, methods for investigating protein-ligand binding and unbinding via molecular dynamics provide details on the involved mechanisms at the molecular level. While these advancements hold promise for impacting drug discovery, a notable drawback persists: their relatively time-consuming nature limits throughput. Herein, we survey recent implementations which, employing a blend of enhanced sampling techniques, a clever choice of collective variables, and often machine learning, strive to enhance the efficiency of new and previously reported methods without compromising accuracy. Particularly noteworthy is the validation of these methods that was often performed on systems mirroring real-world drug discovery scenarios.

摘要

通过充分的灵活性,并能够量化关键参数,如结合自由能和停留时间,通过分子动力学研究蛋白质-配体结合和解离的方法提供了分子水平上涉及的机制的详细信息。虽然这些进展有望对药物发现产生影响,但仍存在一个显著的缺点:它们相对耗时,限制了通量。在此,我们调查了最近的实施情况,这些实施情况采用了增强采样技术的混合、集体变量的巧妙选择,以及通常的机器学习,努力提高新的和以前报告的方法的效率,而不影响准确性。特别值得注意的是,这些方法的验证通常是在模拟现实世界药物发现场景的系统上进行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验