Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
Division of Cardiovascular Medicine, Penn State Health Heart and Vascular Institute, Hershey S. Milton Medical Center, Hershey, PA 17033, USA.
Int J Mol Sci. 2024 Jun 12;25(12):6461. doi: 10.3390/ijms25126461.
Activation of the transcription factor NF-κB in cardiomyocytes has been implicated in the development of cardiac function deficits caused by diabetes. NF-κB controls the expression of an array of pro-inflammatory cytokines and chemokines. We recently discovered that the stress response protein regulated in development and DNA damage response 1 (REDD1) was required for increased pro-inflammatory cytokine expression in the hearts of diabetic mice. The studies herein were designed to extend the prior report by investigating the role of REDD1 in NF-κB signaling in cardiomyocytes. REDD1 genetic deletion suppressed NF-κB signaling and nuclear localization of the transcription factor in human AC16 cardiomyocyte cultures exposed to TNFα or hyperglycemic conditions. A similar suppressive effect on NF-κB activation and pro-inflammatory cytokine expression was also seen in cardiomyocytes by knocking down the expression of GSK3β. NF-κB activity was restored in REDD1-deficient cardiomyocytes exposed to hyperglycemic conditions by expression of a constitutively active GSK3β variant. In the hearts of diabetic mice, REDD1 was required for reduced inhibitory phosphorylation of GSK3β at S9 and upregulation of IL-1β and CCL2. Diabetic REDD1 mice developed systolic functional deficits evidenced by reduced ejection fraction. By contrast, REDD1 mice did not exhibit a diabetes-induced deficit in ejection fraction and left ventricular chamber dilatation was reduced in diabetic REDD1 mice, as compared to diabetic REDD1 mice. Overall, the results support a role for REDD1 in promoting GSK3β-dependent NF-κB signaling in cardiomyocytes and in the development of cardiac function deficits in diabetic mice.
心肌细胞中转录因子 NF-κB 的激活被认为与糖尿病引起的心脏功能缺陷的发展有关。NF-κB 控制着一系列促炎细胞因子和趋化因子的表达。我们最近发现,应激反应蛋白发育和 DNA 损伤反应 1(REDD1)对于糖尿病小鼠心脏中促炎细胞因子表达的增加是必需的。本文的研究旨在通过研究 REDD1 在心肌细胞中 NF-κB 信号传导中的作用来扩展先前的报告。REDD1 基因缺失抑制了 TNFα 或高血糖条件下暴露的人 AC16 心肌细胞培养物中 NF-κB 信号传导和转录因子的核定位。通过敲低 GSK3β 的表达,也观察到对 NF-κB 激活和促炎细胞因子表达的类似抑制作用。在高血糖条件下,通过表达组成型激活的 GSK3β 变体,可恢复 REDD1 缺陷型心肌细胞中的 NF-κB 活性。在糖尿病小鼠的心脏中,REDD1 对于 S9 处 GSK3β 的抑制性磷酸化减少和 IL-1β 和 CCL2 的上调是必需的。糖尿病 REDD1 小鼠表现出收缩功能缺陷,表现为射血分数降低。相比之下,与糖尿病 REDD1 小鼠相比,糖尿病 REDD1 小鼠中 REDD1 并不表现出糖尿病诱导的射血分数缺陷,并且左心室腔扩张减少。总体而言,这些结果支持 REDD1 在促进心肌细胞中 GSK3β 依赖性 NF-κB 信号传导以及在糖尿病小鼠心脏功能缺陷的发展中的作用。