Sunilkumar Siddharth, Yerlikaya Esma I, Toro Allyson L, Chen Han, Zhou Yandong, Gill Donald L, Kimball Scot R, Dennis Michael D
Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA.
Transmission Electron Microscopy Core Facility, Penn State College of Medicine, Hershey, PA.
Diabetes. 2025 Mar 1;74(3):398-408. doi: 10.2337/db24-0533.
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, and effective treatment modalities that fully address its molecular etiology are lacking. Prior studies support that the stress response protein REDD1 (regulated in development and DNA damage 1) contributes to the development of diabetes complications. This study investigated a potential role for REDD1 expression in podocytes in diabetes-induced podocyte loss and compromised glomerular filtration. Podocyte-specific REDD1 deletion protected against renal injury, as evidenced by reduced albuminuria, glomerular hypertrophy, and mesangial matrix deposition in streptozotocin (STZ)-induced diabetic mice. Podocyte-specific REDD1 expression was required for diabetes-induced reduction in slit diaphragm (SD) proteins podocin and nephrin. Notably, podocyte-specific REDD1 deletion protected against podocytopenia and preserved glomerular basement membrane and foot process architecture in diabetic mice. In the kidneys of diabetic mice and in human podocyte cultures exposed to hyperglycemic conditions, REDD1 was necessary for increased expression of the transient receptor potential canonical 6 (TRPC6) channel. More specifically, REDD1 promoted nuclear factor-κB-dependent transcription of TRPC6, intracellular calcium entry, and cytoskeletal remodeling under hyperglycemic conditions. Overall, the findings provide new insight into the role of podocyte-specific REDD1 expression in renal pathology and support the possibility that therapeutics targeting REDD1 in podocytes could be beneficial for DN.
Diabetes-induced albuminuria and reduced glomerular slit diaphragm proteins were associated with increased kidney REDD1 protein abundance. Podocyte-specific deletion of REDD1 attenuated diabetes-induced slit diaphragm protein reduction and podocyte loss. REDD1 was required for nuclear factor-κB-dependent TRPC6 expression and increased cytoplasmic calcium levels in podocytes. Podocyte-specific expression of REDD1 was necessary for altered glomerular architecture and albuminuria in diabetic mice.
糖尿病肾病(DN)是终末期肾病的主要原因,目前缺乏能全面解决其分子病因的有效治疗方法。先前的研究表明,应激反应蛋白REDD1(发育和DNA损伤调节因子1)在糖尿病并发症的发生发展中起作用。本研究探讨了REDD1在足细胞中的表达在糖尿病诱导的足细胞丢失和肾小球滤过功能受损中的潜在作用。足细胞特异性REDD1缺失可预防肾损伤,链脲佐菌素(STZ)诱导的糖尿病小鼠蛋白尿减少、肾小球肥大和系膜基质沉积减少证明了这一点。糖尿病诱导的裂孔隔膜(SD)蛋白足突蛋白和nephrin减少需要足细胞特异性REDD1表达。值得注意的是,足细胞特异性REDD1缺失可预防糖尿病小鼠的足细胞减少,并保留肾小球基底膜和足突结构。在糖尿病小鼠的肾脏和暴露于高血糖条件下的人足细胞培养物中,REDD1是瞬时受体电位阳离子通道6(TRPC6)通道表达增加所必需的。更具体地说,REDD1在高血糖条件下促进TRPC6的核因子κB依赖性转录、细胞内钙内流和细胞骨架重塑。总体而言,这些发现为足细胞特异性REDD1表达在肾脏病理中的作用提供了新的见解,并支持靶向足细胞中REDD1的治疗方法可能对DN有益的可能性。
糖尿病诱导的蛋白尿和肾小球裂孔隔膜蛋白减少与肾脏REDD1蛋白丰度增加有关。足细胞特异性缺失REDD1可减轻糖尿病诱导的裂孔隔膜蛋白减少和足细胞丢失。REDD1是足细胞中核因子κB依赖性TRPC6表达和细胞质钙水平升高所必需的。足细胞特异性表达REDD1是糖尿病小鼠肾小球结构改变和蛋白尿所必需的。