Suppr超能文献

基于深度学习的青少年特发性脊柱侧凸患者Cobb角预测模型

Deep Learning-Based Prediction Model for the Cobb Angle in Adolescent Idiopathic Scoliosis Patients.

作者信息

Chui Chun-Sing Elvis, He Zhong, Lam Tsz-Ping, Mak Ka-Kwan Kyle, Ng Hin-Ting Randy, Fung Chun-Hai Ericsson, Chan Mei-Shuen, Law Sheung-Wai, Lee Yuk-Wai Wayne, Hung Lik-Hang Alec, Chu Chiu-Wing Winnie, Mak Sze-Yi Sibyl, Yau Wing-Fung Edmond, Liu Zhen, Li Wu-Jun, Zhu Zezhang, Wong Man Yeung Ronald, Cheng Chun-Yiu Jack, Qiu Yong, Yung Shu-Hang Patrick

机构信息

Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.

Division of Spine Surgery, Department of Orthopedic Surgery, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China.

出版信息

Diagnostics (Basel). 2024 Jun 14;14(12):1263. doi: 10.3390/diagnostics14121263.

Abstract

Scoliosis, characterized by spine deformity, is most common in adolescent idiopathic scoliosis (AIS). Manual Cobb angle measurement limitations underscore the need for automated tools. This study employed a vertebral landmark extraction method and Feedforward Neural Network (FNN) to predict scoliosis progression in 79 AIS patients. The novel intervertebral angles matrix format showcased results. The mean absolute error for the intervertebral angle progression was 1.5 degrees, while the Pearson correlation of the predicted Cobb angles was 0.86. The accuracy in classifying Cobb angles (<15°, 15-25°, 25-35°, 35-45°, >45°) was 0.85, with 0.65 sensitivity and 0.91 specificity. The FNN demonstrated superior accuracy, sensitivity, and specificity, aiding in tailored treatments for potential scoliosis progression. Addressing FNNs' over-fitting issue through strategies like "dropout" or regularization could further enhance their performance. This study presents a promising step towards automated scoliosis diagnosis and prognosis.

摘要

脊柱侧弯以脊柱畸形为特征,在青少年特发性脊柱侧弯(AIS)中最为常见。手动测量Cobb角存在局限性,这凸显了对自动化工具的需求。本研究采用椎体标志点提取方法和前馈神经网络(FNN)来预测79例AIS患者的脊柱侧弯进展情况。新颖的椎间角度矩阵形式展示了结果。椎间角度进展的平均绝对误差为1.5度,而预测的Cobb角的Pearson相关性为0.86。对Cobb角(<15°、15 - 25°、25 - 35°、35 - 45°、>45°)进行分类的准确率为0.85,灵敏度为0.65,特异性为0.91。FNN显示出更高的准确率、灵敏度和特异性,有助于针对潜在的脊柱侧弯进展制定个性化治疗方案。通过“随机失活”或正则化等策略解决FNN的过拟合问题,可进一步提高其性能。本研究朝着自动化脊柱侧弯诊断和预后迈出了有前景的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/415d/11203267/f7307039155a/diagnostics-14-01263-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验