Suppr超能文献

用于卡尔曼滤波器时空估计的移动传感器路径规划

Mobile Sensor Path Planning for Kalman Filter Spatiotemporal Estimation.

作者信息

Mei Jiazhong, Brunton Steven L, Kutz J Nathan

机构信息

Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.

Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.

出版信息

Sensors (Basel). 2024 Jun 8;24(12):3727. doi: 10.3390/s24123727.

Abstract

The estimation of spatiotemporal data from limited sensor measurements is a required task across many scientific disciplines. In this paper, we consider the use of mobile sensors for estimating spatiotemporal data via Kalman filtering. The sensor selection problem, which aims to optimize the placement of sensors, leverages innovations in greedy algorithms and low-rank subspace projection to provide model-free, data-driven estimates. Alternatively, Kalman filter estimation balances model-based information and sparsely observed measurements to collectively make better estimation with limited sensors. It is especially important with mobile sensors to utilize historical measurements. We show that mobile sensing along dynamic trajectories can achieve the equivalent performance of a larger number of stationary sensors, with performance gains related to three distinct timescales: (i) the timescale of the spatiotemporal dynamics, (ii) the velocity of the sensors, and (iii) the rate of sampling. Taken together, these timescales strongly influence how well-conditioned the estimation task is. We draw connections between the Kalman filter performance and the observability of the state space model and propose a greedy path planning algorithm based on minimizing the condition number of the observability matrix. This approach has better scalability and computational efficiency compared to previous works. Through a series of examples of increasing complexity, we show that mobile sensing along our paths improves Kalman filter performance in terms of better limiting estimation and faster convergence. Moreover, it is particularly effective for spatiotemporal data that contain spatially localized structures, whose features are captured along dynamic trajectories.

摘要

从有限的传感器测量值估计时空数据是许多科学学科都需要完成的任务。在本文中,我们考虑使用移动传感器通过卡尔曼滤波来估计时空数据。旨在优化传感器布局的传感器选择问题,利用了贪婪算法和低秩子空间投影方面的创新,以提供无模型、数据驱动的估计。相比之下,卡尔曼滤波估计则平衡基于模型的信息和稀疏观测到的测量值,以便在传感器数量有限的情况下共同做出更好的估计。对于移动传感器而言,利用历史测量值尤为重要。我们表明,沿动态轨迹进行移动传感可以实现与大量固定传感器等效的性能,其性能提升与三个不同的时间尺度相关:(i)时空动态的时间尺度,(ii)传感器的速度,以及(iii)采样率。综合来看,这些时间尺度强烈影响估计任务的条件数。我们建立了卡尔曼滤波性能与状态空间模型的可观测性之间的联系,并提出了一种基于最小化可观测性矩阵条件数的贪婪路径规划算法。与先前的工作相比,这种方法具有更好的可扩展性和计算效率。通过一系列复杂度不断增加的示例,我们表明沿我们的路径进行移动传感在更好地限制估计和更快收敛方面提高了卡尔曼滤波性能。此外,对于包含空间局部结构的时空数据,它特别有效,这些结构的特征是沿动态轨迹捕获的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0456/11207737/bf93ad719936/sensors-24-03727-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验