Suppr超能文献

用于开发新的光学位置跟踪技术的测试平台,以改善磁共振成像中的头部运动校正。

Test Platform for Developing New Optical Position Tracking Technology towards Improved Head Motion Correction in Magnetic Resonance Imaging.

机构信息

Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.

Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.

出版信息

Sensors (Basel). 2024 Jun 8;24(12):3737. doi: 10.3390/s24123737.

Abstract

Optical tracking of head pose via fiducial markers has been proven to enable effective correction of motion artifacts in the brain during magnetic resonance imaging but remains difficult to implement in the clinic due to lengthy calibration and set up times. Advances in deep learning for markerless head pose estimation have yet to be applied to this problem because of the sub-millimetre spatial resolution required for motion correction. In the present work, two optical tracking systems are described for the development and training of a neural network: one marker-based system (a testing platform for measuring ground truth head pose) with high tracking fidelity to act as the training labels, and one markerless deep-learning-based system using images of the markerless head as input to the network. The markerless system has the potential to overcome issues of marker occlusion, insufficient rigid attachment of the marker, lengthy calibration times, and unequal performance across degrees of freedom (DOF), all of which hamper the adoption of marker-based solutions in the clinic. Detail is provided on the development of a custom moiré-enhanced fiducial marker for use as ground truth and on the calibration procedure for both optical tracking systems. Additionally, the development of a synthetic head pose dataset is described for the proof of concept and initial pre-training of a simple convolutional neural network. Results indicate that the ground truth system has been sufficiently calibrated and can track head pose with an error of <1 mm and <1°. Tracking data of a healthy, adult participant are shown. Pre-training results show that the average root-mean-squared error across the 6 DOF is 0.13 and 0.36 (mm or degrees) on a head model included and excluded from the training dataset, respectively. Overall, this work indicates excellent feasibility of the deep-learning-based approach and will enable future work in training and testing on a real dataset in the MRI environment.

摘要

通过基准标记进行头部姿势的光学跟踪已被证明可以有效地校正磁共振成像过程中的运动伪影,但由于校准和设置时间较长,在临床中仍难以实施。由于运动校正所需的亚毫米空间分辨率,基于深度学习的无标记头部姿势估计的进展尚未应用于该问题。在本工作中,描述了两种用于开发和训练神经网络的光学跟踪系统:一种基于标记的系统(用于测量真实头部姿势的测试平台),具有高精度的跟踪能力,用作训练标签;另一种基于无标记深度学习的系统,使用无标记头部的图像作为网络输入。无标记系统有可能克服标记遮挡、标记附接不牢固、校准时间长以及自由度(DOF)之间性能不均等问题,所有这些问题都阻碍了基于标记的解决方案在临床中的采用。详细介绍了定制莫尔增强基准标记的开发,用作真实值,并介绍了两种光学跟踪系统的校准过程。此外,还描述了用于概念验证和简单卷积神经网络初步预训练的合成头部姿势数据集的开发。结果表明,真实值系统已经经过充分校准,可以以 <1 毫米和 <1°的误差跟踪头部姿势。展示了健康成年人参与者的跟踪数据。预训练结果表明,在包含和不包含训练数据集的头部模型上,6 个 DOF 的平均均方根误差分别为 0.13 和 0.36(毫米或度)。总体而言,这项工作表明基于深度学习的方法具有出色的可行性,并将为在 MRI 环境中的真实数据集上进行训练和测试的未来工作提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abae/11207598/524edaf59779/sensors-24-03737-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验