Suppr超能文献

基于深度学习的多通道 MRI 数据运动校正:使用 fastMRI 数据集模拟伪影的研究。

Deep-learning-based motion correction using multichannel MRI data: a study using simulated artifacts in the fastMRI dataset.

机构信息

Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.

Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada.

出版信息

NMR Biomed. 2024 Oct;37(10):e5179. doi: 10.1002/nbm.5179. Epub 2024 May 29.

Abstract

Deep learning presents a generalizable solution for motion correction requiring no pulse sequence modifications or additional hardware, but previous networks have all been applied to coil-combined data. Multichannel MRI data provide a degree of spatial encoding that may be useful for motion correction. We hypothesize that incorporating deep learning for motion correction prior to coil combination will improve results. A conditional generative adversarial network was trained using simulated rigid motion artifacts in brain images acquired at multiple sites with multiple contrasts (not limited to healthy subjects). We compared the performance of deep-learning-based motion correction on individual channel images (single-channel model) with that performed after coil combination (channel-combined model). We also investigate simultaneous motion correction of all channel data from an image volume (multichannel model). The single-channel model significantly (p < 0.0001) improved mean absolute error, with an average 50.9% improvement compared with the uncorrected images. This was significantly (p < 0.0001) better than the 36.3% improvement achieved by the channel-combined model (conventional approach). The multichannel model provided no significant improvement in quantitative measures of image quality compared with the uncorrected images. Results were independent of the presence of pathology, and generalizable to a new center unseen during training. Performing motion correction on single-channel images prior to coil combination provided an improvement in performance compared with conventional deep-learning-based motion correction. Improved deep learning methods for retrospective correction of motion-affected MR images could reduce the need for repeat scans if applied in a clinical setting.

摘要

深度学习为运动校正提供了一种通用的解决方案,无需修改脉冲序列或增加额外的硬件,但之前的网络都已应用于线圈组合数据。多通道 MRI 数据提供了一种空间编码,可以用于运动校正。我们假设在进行线圈组合之前,使用深度学习进行运动校正将提高结果。使用在多个地点采集的具有多种对比(不限于健康受试者)的脑图像中的模拟刚性运动伪影来训练条件生成对抗网络。我们比较了基于深度学习的运动校正在单个通道图像上的性能(单通道模型)与在进行线圈组合后的性能(通道组合模型)。我们还研究了对图像体积中的所有通道数据进行同时运动校正(多通道模型)。单通道模型显著(p < 0.0001)改善了平均绝对误差,与未校正图像相比,平均提高了 50.9%。这明显优于通道组合模型(传统方法)的 36.3%的提高(p < 0.0001)。与未校正图像相比,多通道模型在图像质量的定量测量中没有显著提高。结果与病理学的存在无关,并且可以推广到训练期间未看到的新中心。与传统的基于深度学习的运动校正相比,在进行线圈组合之前对单通道图像进行运动校正可以提高性能。如果在临床环境中应用改进的深度学习方法来校正受运动影响的磁共振图像,可以减少重复扫描的需要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验