Suppr超能文献

使用深度学习对结构 MRI 图像进行回溯运动伪影校正可提高皮质表面重建的质量。

Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions.

机构信息

Laboratory of Neuro Imaging (LONI), Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Laboratory of Neuro Imaging (LONI), Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

出版信息

Neuroimage. 2021 Apr 15;230:117756. doi: 10.1016/j.neuroimage.2021.117756. Epub 2021 Jan 15.

Abstract

Head motion during MRI acquisition presents significant challenges for neuroimaging analyses. In this work, we present a retrospective motion correction framework built on a Fourier domain motion simulation model combined with established 3D convolutional neural network (CNN) architectures. Quantitative evaluation metrics were used to validate the method on three separate multi-site datasets. The 3D CNN was trained using motion-free images that were corrupted using simulated artifacts. CNN based correction successfully diminished the severity of artifacts on real motion affected data on a separate test dataset as measured by significant improvements in image quality metrics compared to a minimal motion reference image. On the test set of 13 image pairs, the mean peak signal-to-noise-ratio was improved from 31.7 to 33.3 dB. Furthermore, improvements in cortical surface reconstruction quality were demonstrated using a blinded manual quality assessment on the Parkinson's Progression Markers Initiative (PPMI) dataset. Upon applying the correction algorithm, out of a total of 617 images, the number of quality control failures was reduced from 61 to 38. On this same dataset, we investigated whether motion correction resulted in a more statistically significant relationship between cortical thickness and Parkinson's disease. Before correction, significant cortical thinning was found to be restricted to limited regions within the temporal and frontal lobes. After correction, there was found to be more widespread and significant cortical thinning bilaterally across the temporal lobes and frontal cortex. Our results highlight the utility of image domain motion correction for use in studies with a high prevalence of motion artifacts, such as studies of movement disorders as well as infant and pediatric subjects.

摘要

在 MRI 采集过程中头部运动会对神经影像学分析带来显著挑战。在这项工作中,我们提出了一个基于傅里叶域运动模拟模型和成熟的 3D 卷积神经网络(CNN)架构的回顾性运动校正框架。我们使用三个独立的多站点数据集来评估定量评估指标。3D CNN 使用未受运动影响的图像进行训练,这些图像受到模拟伪影的干扰。基于 CNN 的校正方法成功地减轻了真实受运动影响数据上伪影的严重程度,与最小运动参考图像相比,图像质量指标有显著改善。在 13 对图像测试集中,平均峰值信噪比从 31.7 提高到 33.3 dB。此外,我们使用帕金森病进展标志物倡议(PPMI)数据集的盲法手动质量评估,展示了皮质表面重建质量的改善。在应用校正算法后,在总共 617 张图像中,质量控制失败的数量从 61 张减少到 38 张。在同一数据集上,我们还研究了运动校正是否会导致皮质厚度与帕金森病之间的相关性更具统计学意义。在未校正之前,发现显著的皮质变薄仅限于颞叶和额叶的有限区域。校正后,发现双侧颞叶和额皮质有更广泛和更显著的皮质变薄。我们的结果强调了图像域运动校正在运动伪影高发研究中的应用价值,例如运动障碍研究以及婴儿和儿科研究。

相似文献

7
MC -Net: motion correction network for multi-contrast brain MRI.MC-Net:用于多对比度脑 MRI 的运动校正网络。
Magn Reson Med. 2021 Aug;86(2):1077-1092. doi: 10.1002/mrm.28719. Epub 2021 Mar 15.
10
Correction of out-of-FOV motion artifacts using convolutional neural network.使用卷积神经网络校正视场外运动伪影。
Magn Reson Imaging. 2020 Sep;71:93-102. doi: 10.1016/j.mri.2020.05.004. Epub 2020 May 25.

引用本文的文献

本文引用的文献

9
NiftyNet: a deep-learning platform for medical imaging.NiftyNet:一个用于医学成像的深度学习平台。
Comput Methods Programs Biomed. 2018 May;158:113-122. doi: 10.1016/j.cmpb.2018.01.025. Epub 2018 Jan 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验