静息态功能磁共振成像:走过场。

Resting State fMRI: Going Through the Motions.

作者信息

Maknojia Sanam, Churchill Nathan W, Schweizer Tom A, Graham S J

机构信息

Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.

Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.

出版信息

Front Neurosci. 2019 Aug 13;13:825. doi: 10.3389/fnins.2019.00825. eCollection 2019.

Abstract

Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on the millimeter scale, with complex spatiotemporal properties that can lead to substantial errors in functional connectivity estimates. Effective correction methods must be employed, therefore, to distinguish true functional networks from motion-related noise. Research over the last three decades has produced numerous correction methods, many of which must be applied in combination to achieve satisfactory data quality. Subject instruction, training, and mild restraints are helpful at the outset, but usually insufficient. Improvements come from applying multiple motion correction algorithms retrospectively after rs-fMRI data are collected, although residual artifacts can still remain in cases of elevated motion, which are especially prevalent in patient populations. Although not commonly adopted at present, "real-time" correction methods are emerging that can be combined with retrospective methods and that promise better correction and increased rs-fMRI signal sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI research will benefit from good disclosure practices, such as: (1) reporting motion-related quality control metrics to provide better comparison between studies; and (2) including motion covariates in group-level analyses to limit the extent of motion-related confounds when studying group differences.

摘要

静息态功能磁共振成像(rs-fMRI)已成为神经科学研究中不可或缺的工具。尽管如此,rs-fMRI信号很容易受到数据采集过程中头部运动产生的伪影的干扰。即使是毫米级的运动,这些伪影也可能产生问题,其复杂的时空特性可能导致功能连接估计出现重大误差。因此,必须采用有效的校正方法,以区分真正的功能网络和与运动相关的噪声。过去三十年的研究产生了众多校正方法,其中许多方法必须结合使用才能获得令人满意的数据质量。一开始,对受试者的指导、训练和轻度约束是有帮助的,但通常还不够。改进来自于在rs-fMRI数据收集后回顾性地应用多种运动校正算法,不过在运动加剧的情况下仍可能残留伪影,这在患者群体中尤为普遍。虽然目前不常采用,但正在出现的“实时”校正方法可以与回顾性方法相结合,并有望实现更好的校正效果和提高rs-fMRI信号的灵敏度。在继续寻找理想的运动校正方案的同时,rs-fMRI研究将受益于良好的披露做法,例如:(1)报告与运动相关的质量控制指标,以便在不同研究之间进行更好的比较;(2)在组水平分析中纳入运动协变量,以在研究组间差异时限制与运动相关的混杂因素的影响程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索