Ahmad M Sheraz, Mir Junaid, Ullah Muhammad Obaid, Shahid Muhammad Laiq Ur Rahman, Syed Muhammad Adnan
Electrical Engineering Department, University of Engineering and Technology Taxila, Taxila, Pakistan.
Computer Science Department, University of Engineering and Technology Taxila, Taxila, Pakistan.
Australas Phys Eng Sci Med. 2019 Sep;42(3):733-743. doi: 10.1007/s13246-019-00778-x. Epub 2019 Jul 16.
The problem addressed in this work is the detection of a heart murmur and the classification of the associated cardiovascular disorder based on the heart sound signal. For this purpose, a dataset of Phonocardiogram (PCG) signals is acquired using baseline conditions. The dataset is acquired from 283 volunteers using Littman 3200 electronic stethoscope for a normal and four different types of heart murmurs. The samples are labelled and validated through echocardiography test of each participating volunteer. For feature extraction, normalized average Shannon energy with time-domain characteristics of heart sound signal is exploited to segment the PCG signal into its components. To improve the quality of the features, in contrast to the previous methods, all systole and diastole intervals are utilized to extract 50 Mel-Frequency Cepstrum Coefficients (MFCC) based features. Then, the iterative backward elimination method is used to identify and remove the redundant features to reduce the complexity in order to conceive a computationally tractable system. An MFCC feature vector of dimension 26 is selected for training seven different types of Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) based classifiers for detection and classification of cardiovascular disorders. Fivefold cross-validation and 20% data holdout validation schemes are used for testing the classifiers. Classification accuracy of 92.6% is achieved using selected features and medium Gaussian SVM classifier. The learning curves show a good bias-variance trade-off indicating a well-fitted and generalized model for making future predictions.
这项工作所解决的问题是基于心音信号检测心脏杂音并对相关心血管疾病进行分类。为此,在基线条件下采集了一个心音图(PCG)信号数据集。该数据集是使用 Littman 3200 电子听诊器从 283 名志愿者那里获取的,涵盖正常情况以及四种不同类型的心脏杂音。通过对每位参与志愿者进行超声心动图检查对样本进行标记和验证。对于特征提取,利用具有心音信号时域特征的归一化平均香农能量将 PCG 信号分割成其各个组成部分。与先前的方法不同,为了提高特征质量,利用所有的收缩期和舒张期间隔来提取基于 50 个梅尔频率倒谱系数(MFCC)的特征。然后,使用迭代反向消除方法来识别和去除冗余特征以降低复杂度,从而构建一个计算上易于处理的系统。选择一个维度为 26 的 MFCC 特征向量来训练七种不同类型的基于支持向量机(SVM)和 K 近邻(KNN)的分类器,用于心血管疾病的检测和分类。使用五折交叉验证和 20%数据留出验证方案来测试分类器。使用选定特征和中等高斯 SVM 分类器实现了 92.6%的分类准确率。学习曲线显示出良好的偏差 - 方差权衡,表明该模型拟合良好且具有通用性,可用于未来的预测。