Suppr超能文献

一种用于执行长数据集的增强型FGI-GSRx软件定义接收机。

An Enhanced FGI-GSRx Software-Defined Receiver for the Execution of Long Datasets.

作者信息

Liaquat Muwahida, Bhuiyan Mohammad Zahidul H, Islam Saiful, Pääkkönen Into, Kaasalainen Sanna

机构信息

Department of Navigation and Positioning, Finnish Geospatial Research Institute, 02150 Espoo, Finland.

出版信息

Sensors (Basel). 2024 Jun 20;24(12):4015. doi: 10.3390/s24124015.

Abstract

The Global Navigation Satellite System (GNSS) software-defined receivers offer greater flexibility, cost-effectiveness, customization, and integration capabilities compared to traditional hardware-based receivers, making them essential for a wide range of applications. The continuous evolution of GNSS research and the availability of new features require these software-defined receivers to upgrade continuously to facilitate the latest requirements. The Finnish Geospatial Research Institute (FGI) has been supporting the GNSS research community with its open-source implementations, such as a MATLAB-based GNSS software-defined receiver FGI-GSRx' and a Python-based implementation FGI-OSNMA' for utilizing Galileo's Open Service Navigation Message Authentication (OSNMA). In this context, longer datasets are crucial for GNSS software-defined receivers to support adaptation, optimization, and facilitate testing to investigate and develop future-proof receiver capabilities. In this paper, we present an updated version of FGI-GSRx, namely, FGI-GSRx-v2.0.0, which is also available as an open-source resource for the research community. FGI-GSRx-v2.0.0 offers improved performance as compared to its previous version, especially for the execution of long datasets. This is carried out by optimizing the receiver's functionality and offering a newly added parallel processing feature to ensure faster capabilities to process the raw GNSS data. This paper also presents an analysis of some key design aspects of previous and current versions of FGI-GSRx for a better insight into the receiver's functionalities. The results show that FGI-GSRx-v2.0.0 offers about a 40% run time execution improvement over FGI-GSRx-v1.0.0 in the case of the sequential processing mode and about a 59% improvement in the case of the parallel processing mode, with 17 GNSS satellites from GPS and Galileo. In addition, an attempt is made to execute v2.0.0 with MATLAB's own parallel computing toolbox. A detailed performance comparison reveals an improvement of about 43% in execution time over the v2.0.0 parallel processing mode for the same GNSS scenario.

摘要

与传统的基于硬件的接收器相比,全球导航卫星系统(GNSS)软件定义接收器具有更高的灵活性、成本效益、定制性和集成能力,这使其在广泛的应用中至关重要。GNSS研究的不断发展以及新特性的出现要求这些软件定义接收器不断升级,以满足最新需求。芬兰地理空间研究所(FGI)一直通过其开源实现来支持GNSS研究社区,例如基于MATLAB的GNSS软件定义接收器“FGI-GSRx”以及用于利用伽利略开放服务导航消息认证(OSNMA)的基于Python的实现“FGI-OSNMA”。在这种情况下,更长的数据集对于GNSS软件定义接收器支持适应性、优化以及便于测试以研究和开发面向未来的接收器能力至关重要。在本文中,我们展示了FGI-GSRx的更新版本,即FGI-GSRx-v2.0.0,它也作为一种开源资源提供给研究社区。与之前的版本相比,FGI-GSRx-v2.0.0性能有所提升,特别是在处理长数据集方面。这是通过优化接收器的功能并提供新添加的并行处理特性来实现的,以确保更快地处理原始GNSS数据的能力。本文还对FGI-GSRx之前版本和当前版本的一些关键设计方面进行了分析,以便更好地了解接收器的功能。结果表明,在顺序处理模式下,FGI-GSRx-v2.0.0比FGI-GSRx-v1.0.0的运行时间执行速度提高了约40%;在并行处理模式下,对于来自GPS和伽利略的17颗GNSS卫星,运行时间执行速度提高了约59%。此外,还尝试使用MATLAB自己的并行计算工具箱来执行v2.0.0。详细的性能比较显示,在相同的GNSS场景下,与v2.0.0并行处理模式相比,执行时间提高了约43%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验